

��������	
��
�
��������	
����
��������

�������������
�

������������ ������ �

�

Authors:

Jan Steinar Kvilesjø

Christian André Bråthe

Lars Martin Dobbe

In cooperation with the Istituto di Radioastronomia.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 2

OSTFOLD COLLEGE

 O s t f o l d C o l l e g e - E n g i n e e r i n g e d u c a t i o n
 P o s t b o k s 1 1 9 2 , V a l a s k j o l d , V i s i t : T u n e v e i e n 2 0
 1 7 0 5 S a r p s b o r g
 T e l e f o n : 6 9 1 0 4 0 0 0 , T e l e f a k s : 6 9 1 0 4 0 0 2
 E - m a i l : p o s t - i r @ h i o f . n o U R L : w w w . h i o f . n o

1 Tile page

Final Project Free accessible X
Number of ECTS: 15

Accessible after
agreement with the

Engineering field:
Computer Science

contractor

Project title:
E.L.F.O. Analysis

 Date: 2003-05-26

 Number of pages: 56

 Number of attachments: 7

Authors:
Jan Steinar Kvilesjø, Lars Martin Dobbe and
Christian André Bråthe

 Councellor:
 Erling P. Strand

Department / line:
IA - Informatics and Automatisation

Project code:
H03D03

Produced in cooperation with:
CNR, IRA, Italy

 Contact person at the
contractor:
 Stelio Montebugnoli

Extract:
The E.L.F.O. system is a system developed by the IRA in Italy. Its purpose is to
record low frequency electromagnetic signals which might be of interest for
research on strange phenomena in Hessdalen. The system today consists of
software and one E.L.F.O. correlation unit which can be connected to a personal
computer by the USB port. The purpose of the project is debugging the existing
software, create a user manual and to develop an automatic system to acquire
low frequency signals in, for example, Hessdalen (Norway).

3 indexing terms: Hessdalen Phenomena
 E.L.F.O.
 Low frequent signals

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 3

2 Preface

This report describes the E.L.F.O. analysis project, which is a senior student project

at Ostfold Collage, and it’s a part of the Computer Science study, at the engineering

department. It’s done in cooperation with Institute of Radio Astronomy (IRA) in

Medicina, Italy.

Ostfold Collage has departments several places in Ostfold, Norway. In Halden the

following departments are located: teacher education, informatics and automation

and social studies and languages. In Sarpsborg, the engineering department is

located. And last the academy of figurative theatre and health care is located in

Fredrikstad. The collage has about 3725 students divided all over the different

departments.

The Institute of Radio Astronomy is located Italy. And it’s a part of the Italian

National Research Council (CNR). It has a staff of about 100, astronomers,

electronic engineers-physicists, software specialists, technical and administrative

support. The Institute headquarters are in Bologna. Other sections of the institute

are located in Firenze, Matera, Medicina Noto and Cagliari. The Medicina station

has about 24 employees.

At this station we have got much help and support from the employees. We thank

them for everything. We will also like to thank Per-Olav Rusås, Martin Kermit and

Åge J. Eide for good help and information during this project.

E.L.F.O. analysis homepage: http://sylfest.hiof.no/~d200303/

CNR homepage: http://www.ira.cnr.it/

Sarpsborg, 27 May 2003

 _______________________ ______________________

 Christian André Bråthe Lars Martin Dobbe

Jan Steinar Kvilesjø

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 4

3 Contents

1 TILE PAGE.. 2
2 PREFACE ... 3
3 CONTENTS... 4
4 SUMMARY .. 6
5 INTRODUCTION... 7
6 ORIGINAL SITUATION .. 8

6.1 OVERVIEW .. 8
6.2 SYSTEM OVERVIEW ... 9

6.2.1 E.L.F.O. CORRELATION UNIT.. 10
6.2.2 E.L.F.O. SOFTWARE .. 12

7 USER REQUIREMENTS .. 15
7.1 USER DEMANDS FOR THE EXISTING E.L.F.O. SOFTWARE... 15

7.1.1 GENERAL EXISTING E.L.F.O. SOFTWARE DEMANDS ... 15
7.1.2 DOCUMENTATION REQUIREMENTS .. 15

7.2 USER DEMANDS FOR THE E.L.F.O. ANALYZE SYSTEM.. 16
7.2.1 ILLUSTRATE THE WAV FILES AS JPG IMAGE... 16
7.2.2 SIGNAL FILTERING / NEURAL NETWORK .. 16
7.2.3 UPLOADING FILES TO A REMOTE LOCATION.. 16
7.2.4 FILE COMPRESSION ... 17
7.2.5 REMOTE ADMINISTRATION .. 17
7.2.6 DOCUMENTATION REQUIREMENTS .. 17

8 SYSTEM SPESIFICATION ... 18
8.1 EXISTING E.L.F.O. SYSTEM IMPROVEMENT... 18

8.1.1 Software debugging ... 18
8.1.2 User manual ... 19
8.1.3 Running the software on Unix/Linux platform .. 19

8.2 TOTAL E.L.F.O. SYSTEM DESCRIPTION... 20
8.2.1 Development of the system.. 20
8.2.2 Software ... 22

8.2.2.1 Wav2Jpg converter .. 23
8.2.2.1.1 Automatic Mode .. 23
8.2.2.1.2 Manual Mode... 24
8.2.2.1.3 3D feature .. 24
8.2.2.1.4 Technical solution ... 25

8.2.2.1.4.1 Retrieving signal using the javax.sound.sampled API................................. 26
8.2.2.1.4.2 The FFT Algorithm.. 28
8.2.2.1.4.3 Integer to RGB conversion .. 30
8.2.2.1.4.4 Creating the JPG image .. 30
8.2.2.1.4.5 Complete conversion example ... 31
8.2.2.1.4.6 Displaying an image in 3D... 33
8.2.2.1.4.7 Known errors and possible improvements .. 33

8.2.2.2 Neural network filtering software.. 34
8.2.2.2.1 Tested algorithms ... 34
8.2.2.2.2 The O-Algorithm.. 35

8.2.2.2.2.1 Pre-processing the signal with Haar wavelets.. 35
8.2.2.2.2.2 O-algorithm (Technical description) ... 36
8.2.2.2.2.3 Training data ... 37
8.2.2.2.2.4 Advantages with O-algorithm .. 37
8.2.2.2.2.5 Known problems with O-algorithm ... 37

8.2.2.2.3 The Feed-Forward Back-Propagation algorithm .. 38
8.2.2.2.3.1 Pre-processing the signal with FFT transformation 38
8.2.2.2.3.2 Feed-Forward Back-Propagation algorithm (Technical description) 38
8.2.2.2.3.3 Training data ... 40

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 5

8.2.2.2.3.4 Advantages with Feed-Forward Back-Propagation algorithm 40
8.2.2.2.3.5 Problems with feed-forward back-propagation network 40

8.2.2.2.4 Algorithm conclusion .. 41
8.2.2.2.5 Software structure and use of the chosen algorithm ... 41

8.2.2.3 Scheduler .. 42
8.2.2.3.1 Program structure ... 42
8.2.2.3.2 Program usage.. 45
8.2.2.3.3 Uploading files to remote location .. 45
8.2.2.3.4 Compressing files ... 46

8.2.3 Webpage .. 47
8.2.3.1 Web-Page structure... 47

8.2.3 Remote administration ... 48
8.3 CONCLUSION .. 49

9 PROJECT SCHEME ... 50
9.1 MILESTONE CHART .. 50
9.2 ACTIVITY AND RESPONSIBILITY CHART FOR THE PROJECT .. 50

9.2.1 Activity chart ... 50
9.2.2 The responsibility distribution ... 51

9.3 PROJECT BUDGET (SKETCH) .. 52
10 ABBREVIASJONS SURVEY.. 53
11 SOURCES... 54
12 PICTURE REFERENCES ... 55
13 ENCLOSURE INDEX.. 56

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 6

4 Summary
The E.L.F.O. system today consists of software and one correlation unit which can

be connected to a personal computer through the USB port. The system is

developed by the IRA in Italy, and its purpose is to record low frequency

electromagnetic signals which might be of interest for research on strange

phenomena in Hessdalen.

This project has two purposes. The first one is to check the existing E.L.F.O.

software for bugs and report those to the creator for correction. A number of bugs

have been found, and are reported to the creator. It’s also necessary to write a user

manual for the E.L.F.O. software so other peoples who don’t know the program can

more easily use it. This user manual can be found as enclosure 3.

Latter, a complete E.L.F.O. analyze system has been designed. This system should

be able to filter out uninteresting signals, and then to send interesting signals to a

remote server. There, the data can be presented on web. To do this we need to

make the system more intelligent in order to decide “good” data from the

uninteresting one for example using a neural network system. When the neural

network has filtered out interesting data, our wav2jpg converter will create images.

The jpg output file will be sent to www.hessdalen.org. After filtering has been done,

the original wav files are compressed and stored on a large disk for backup.

In Hessdalen there is an automatic station called “Blue Box”: The system is intended

to be used there, to record any possible low frequent signals coming from the

strange phenomenon.

You can read more about Hessdalen at: www.hessdalen.org

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 7

5 Introduction

Project Hessdalen started in 1983 with a large expedition. The result of this was 53

visual observations. Some years later, an automatic measurement station was put

up. This station (Figure 5-1) automatically records and presents the result on web.

Figure 5-1: Hessdalen station

The cooperation between the Hessdalen project and IRA started in the beginning of

1990 by Massimo Teodorani, who made contact with Erling P. Strand.

1996 a cooperation between IRA and Østfold Collage started in order to use some

of the instruments designed for radio astronomy for acquiring data from Hessdalen.

This project was called Embla. During a mission in 2000, Italian researchers

designed a special VLF (Very Low Frequency) receiver that records electromagnetic

signals. This receiver was called E.L.F.O.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 8

Signal
simulator

Antenna 1

Antenna 2

USB output

AUX input

The E.L.F.O. software
AUX signal generator

6 Original situation

6.1 Overview

The E.L.F.O. system is consisting of: Two VLF (Very low frequency) antennas, two

VLF receivers, one correlation unit and one PC with software. With the correlation

unit you can receive electromagnetic signals from two antennas, and send the

captured signals to a computer using the USB interface. The software has the ability

to capture and store the signals coming from the receiver. Results from this system

can be used to analyze for example the Hessdalen Phenomena.

With the E.L.F.O. we can analyze signals between 1 to 16 kHz. The E.L.F.O.

software you can also specify a smaller range. It can, for example, only capture

signals between 1 to 5 kHz if that’s more appropriate.

Every natural signal on earth (for example: lightning and other electromagnetic

interference in the atmosphere) are VLF signals. There for the E.L.F.O. system is

created to capture those signals. If an unknown phenomena occurs, the signal can

be analyzed to see if it’s only a natural signal or if it’s something strange occurs.

In Figure 6-1 a test setup of the E.L.F.O. system is shown.

Figure 6-1: Test setup overview

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 9

6.2 System overview

The E.L.F.O. system consists of the two VLF receivers that get the signals from the

antennas. The VLF receivers are connected to a correlation unit. This unit is

controlled by a host computer which has the E.L.F.O. software installed. On the host

computer the E.L.F.O. software reads the digitalized signal trough the USB port and

then decide if the signal should be saved or not. The wav files then can be sent to a

remote location. The system was tested in 2000 in the “Blue Box” in Hessdalen,

Norway.

See Figure 6-2 for a system overview.

Figure 6-2: E.L.F.O. system overview

C
orrelation U

nit

Sarpsborg

 www.hessdalen.org

”Blue Box”

ISDN

Internet

USB

AUX input

E.L.F.O.
host
computer

Antenna 1 Antenna 2

R
eceiver

R
eceiver

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 10

6.2.1 E.L.F.O. correlation unit

The correlation unit (Figure 6-4) correlates the two received signals from the

antennas. The signals are sent to the correlation unit and the ADC (Analog to digital

converter). Special output on the correlation unit allows you to listen to the received

signals through a loudspeaker and take them out on an audio interface. Another

possibility is to take the digital signals from the ADC out through the USB port to the

host computer that controls the whole system.

Inside the E.L.F.O. correlation unit, there is a Ni-DAQ 6020, USB interface unit,

used to capture real-time data. It’s this DAQ (Digital Acquisition) unit which controls

the communication with the computer through the USB port. This part is essential to

make the correlation unit work with a host computer. You can read more about the

Ni-DAQ 6020 in the official specification PDF found here [10].

You can see Figure 6-3. There you will se the data float inside the correlation unit.

Figure 6-3: Correlation unit overview

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 11

The E.L.F.O. correlation unit also has an AUX input. Here you can, for example,

connect a signal from a camera which can be used to trigger the recording

mechanism. In this way, if for example a camera captures a strange phenomenon,

the data capture can start.

Inside there are also connected two batteries; they can be used to make the unit

mobile. If you are going to use the E.L.F.O. system in a place without power, it can

operate for several hours.

Figure 6-4: The E.L.F.O. correlation unit

Antenna 2 Antenna 1

Audio output

USB cable to computer

National Instrument ADC Batteries (for mobile opearation)

AUX input

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 12

6.2.2 E.L.F.O. software

Andrea Cremonini has written the E.L.F.O. software. It’s written in CVI (C for Visual

Instruments, where C is the programming language ANSI C), and the source code is

in ANSI C programming language.

The software always displays the power spectrum of the input from both of the

antennas at the same time (as long there is an antenna connected). When an alarm

occurs, the software starts recording the signal from the antenna you choose to

record from in the settings. There you can choose to record signals from antenna

one, antenna two or both of them. See Figure 6-5 and enclosure 3.

Figure 6-5: E.L.F.O. GUI structure

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 13

The E.L.F.O. software can operate in three different modes:

• Automatic: The E.L.F.O. software looks for signals over a given level. If a

signal becomes stronger then this level, the software automatically records

from the channels set in the settings. This “trigger” level can be set in the

spectrum window for each antenna, or in the antenna settings window.

• Manual: The use can manually record signals. You can start recording the

signals from the channel set in the settings, by pushing the SAVE button.

• External: An external signal, coming from a different instrument (camera,

radar, etc) connected to the AUX port, can trigger the alarm. This must be

activated in the settings as well.

Frequencies that are not interesting can be cut away by the software. The software

also has the opportunity to display a joint time-frequency analysis of the signal.

This system is the basic tool for capturing signals from the antennas. It stores the

signal in a normal WAV file which you can listen to or viewed in other programs

afterwards.

You can read more about the E.L.F.O. software structure and usage in the user

manual found as enclosure 3.

Figure 6-6 shows the basic user interface of the E.L.F.O. Software.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 14

Figure 6-6: Basic E.L.F.O. software user interface.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 15

7 User requirements
This user requirement is created as an agreement between Erling P. Strands

demands and Stelio Montebugnoli, Andrea Orlati, Jader Monari, Andrea Cremonini

and Marco Polonis demands.

7.1 User demands for the existing E.L.F.O. software

7.1.1 General existing E.L.F.O. software demands

There are no new demands for this software, except that the software is to be

debugged. The main task is to come with suggestions on how to make the software

better and more stable than it is today.

The errors are to be reported in a debug report which can be handed over to and

corrected by the creator.

A second task is to investigate the possibility to make the software work under a

Unix/Linux operating system. Is there a possibility for the software and the hardware

to work correctly under the UNIX environment?

7.1.2 Documentation requirements

There is to be created a fully functional user manual for the software, since this does

not exist at present time. The user manual must be written in English, to reach a big

spectre of users.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 16

7.2 User demands for the E.L.F.O. analyze system

7.2.1 Illustrate the wav files as jpg image

The system has to convert the WAV files to JPG files, which is extremely much

smaller than the WAV file. But remember that with the JPG format some information

is lost, and is only useful for visualization, so the WAV files must be stored as well.

Those jpg files can be transferred to a remote location and can be displayed on a

web page. This makes a great visualizing of the signal captured from the E.L.F.O.

system.

7.2.2 Signal filtering / Neural Network

The system must be able to filter out known signals in order to reduce the transfer

rate and to store unnecessary data. The filter can use the wav files created by the

E.L.F.O. software to find similar signals based on already known signals.

If a similar signal is found, the wav file can be deleted, or keept, depending on the

users’ request. The file must be compressed and stored on a large disk (example

120 GB).

7.2.3 Uploading files to a remote location

The system must be able to send the jpg format files to a remote location, so the

user can see if the files are interesting or not. If it’s not interesting the user can

decide to manually delete wav file from the E.L.F.O. computer.

This jpg file can be uploaded in the official webpage of project Hessdalen:

www.hessdalen.org.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 17

7.2.4 File compression

When the system decides to keep the WAV file it must be compressed to save

space. This can be done in several ways, but the best way is to zip down the wav

files to make it smaller. In this way you will not loose any information (zip

compression isn’t data loss algorithm).

You can also store several wav files in the same zip archive. All wav files created

the same day can be compressed into the same archive.

7.2.5 Remote administration

A remote connection to the system must be considered. In this way the user can for

example reset, stop, start manual save and check logs for the whole system.

7.2.6 Documentation requirements

The complete system must have a user manual on how to set up and how to use the

system. The user manual must include how to use the WAV2JPG converter

program, and the neural network program since those programs are going to be a

bit bigger than the rest. Besides that, no particular documentation is demanded.

Notice: This documentation is additional to the E.L.F.O. software documentation.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 18

8 System spesification

8.1 Existing E.L.F.O. system improvement

This section refers to 7.1: User demands for the existing E.L.F.O. software.

8.1.1 Software debugging

The E.L.F.O. software has been tested on several operating systems, including:

Windows 2000 Server, Windows 2000 Professional, Window XP and Windows 98.

Several errors have been found in the existing E.L.F.O. software. Underneath there

is a list of some bugs found (They are spitted into two categories: Major and minor

bugs).

Major problems that are found:

• The wav files.

The problem here is that the software stores irrelevant information in the wav

files. If for example the wav file is consists of 4000000 samples, it might

occur that only 3500000 samples contain information, the rest is set to 0.

This may create problems for other programs that are supposed to read the

wav files.

• The graphics.

When the program run for a long period or if there are big changes in

frequencies or amplitude, the graphic sometimes stops and sometimes also

disappears or the signals just roam randomly. This causes the program to

stop, and not respond to alarms that might occur. This bug is more common

under windows 98 and windows 2000 server version. In windows XP it

seems to work a lot better. Probably because Windows XP has better

threading system.

Small problems that are found (Do not effect the functionality):

• The windows.

Some of the windows in the program cannot be moved. This can be irritating

for the user and should be fixed.

• The filenames.

The program stores the files with a filename containing the time when the

alarm occurred. This might be 15.03.56 for example. But then the file is

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 19

stored as 15_3_56. This makes the files unsorted by default. It should have

the same number of figures. Another problem discovered in the filename is

the # character. For examples a web browser cannot read that character,

and this can cause problems. So instead, maybe it’s better to call the files for

example: 15_03_56_1.wav?

For more information about the debugging, please see the debugging report,

created for the IRA and CNR. The report can be found as enclosure 2.

8.1.2 User manual

The user manual for the E.L.F.O. software has been written by Jan Steinar Kvilesjø,

and can be found as enclosure 3.

8.1.3 Running the software on Unix/Linux platform

After several researches it seems that this is not possible at present time. Inside the

E.L.F.O. receiver there is a DAQ unit created by National Instruments (as described

in 6.2.1). It’s that unit which is connected to the PC using the USB interface. At

present time there are no drivers developed for Unix/Linux operative system. The

software can be compiled for Linux.

Please see [1] for more information about running National Instrument units under

Unix/Linux. This article describes some possibilities for other National Instrument

units under Unix/Linux, but not for the Ni-DAQ 6020 yet.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 20

8.2 Total E.L.F.O. system description

This section refers to section 7.2: User demands for the E.L.F.O. analyze system.

8.2.1 Development of the system

In Figure 8-1 you can see the system. First the E.L.F.O. software captures the signal

for the E.L.F.O. receiver and stores the wav files in a folder named with the date

they were captured (This is a built in function in the E.L.F.O. software). Once a day,

the scheduler starts compressing the wav files into archives. After compressing the

files, a neural network is scanning through all the files looking for known or non

interesting signals. The signals that are left after the filtration are converted into jpg

images and sent over to a remote location for web presentation. You can read more

about the different software in section 9.2. You can also see the overall float

diagram in Figure 8-2.

Figure 8-1: Figure of system overview.

C
orrelation U

nit

Sarpsborg

 www.hessdalen.org

”Blue Box”

ISDN

Internet

USB

E.L.F.O.
Software

Inside the E.L.F.O. computer (scheduler)

1. Capture wav files from the E.L.F.O. system

2. Compress and store the wav files

3. Analyze with artificial intelligent

4. Convert the file into a jpg file

5. Send the jpg file to a remote location

AUX input

Antenna 1 Antenna 2

R
eciever

R
eciever

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 21

Figure 8-2: E.L.F.O. system float diagram

START

Capture data with
E.L.F.O. software

IF CLOCK

FALSE

TRUE

LO
O

P

Copy data from the E.L.F.O. software data
folder (C:\DATA) to the temporary folder
(C:\TMP)

Compress all wav files into the backup
folder. Example C:\ELFO_BACKUP

Filter the signals using the filtering software

Convert all remaining wav files into JPG
images.

Copy the wav files to aremote location.
Example www.hessdalen.org

Delete all files from the
temporary folder. Example
C:\TMP

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 22

8.2.2 Software

The system consists of five programs. With this solution, you can easily replace

some of the programs with new ones The Recognition program is an example of

this. Other benefits are that you can use some parts of this system on other

systems. The wav2jpg converter is an example of this. All of them have to work

together as a team to make the system fully functional.

The software used in the system is the following:

• E.L.F.O. Software (Read more in section 6.2.2)

• PSCP for Windows (Read more in section 8.2.2.3.3)

• Wav2Jpg Converter (Read more in section 8.2.2.1)

• Scheduler (Read more in section 8.2.2.3)

• Neural Network Analyze software (Read more in section 8.2.2.2)

All software developed by us is created using JAVA technology. This is because it

would be easy to use the software between platforms (Windows / UNIX / Linux)

depending on what platform you are running. The JAVA technology is known, not to

be the fastest programming language. But since none of the programs uses much

graphics the speed is maintained in a good way, and the Java technology is good

language to use.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 23

8.2.2.1 Wav2Jpg converter

This program consists of three different parts. One part is the automatic mode

whose main task is to automatically convert wav files captured by the E.L.F.O.

software system (see section 8.2.2.1.1). The second part is the manual mode. Here,

wav files can be converted into jpg images at a users request (see section

8.2.2.1.2). The last part is the 3D display function. The program can here take an

image (at users request) and display it in 3D (see section 8.2.2.1.3).

Figure 8-3: Wav2Jpg Converter – GUI overview diagram

8.2.2.1.1 Automatic Mode

In automatic mode, the user of the program can select a particular folder that he/she

wants the program work in. The program takes the selected folder and scans it for

wav files. Each of the wav files that the program finds are converted into jpg images

and placed in a subfolder called “Processed_Images”.

If a subfolder is found, it also scans that one, and process the wav files in the same

way as in the parent folder. It continues like that until all subfolders are processed.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 24

8.2.2.1.2 Manual Mode

In manual mode, the user can select which wav file he/she wants to convert. The

user selects the filename of the file to convert, and the filename of the image to

store. After conversion, the image representing the wav file will be stored as the

user demanded. (See more about how the program is built up in section 8.2.2.1.4).

8.2.2.1.3 3D feature

The program also has function used to display different images in 3D. This function

can be useful for a better understanding of the picture created by this program. Here

you can follow the timeline in the picture and se what amplitude the signal has in a

specific frequency. This function also has the possibility to display other pictures in

3D, but it’s meant to be used for pictures created by this program and nothing else.

Remember that the picture created cannot be saved, and therefore only be viewed

in this program. See the 3D plot here: Figure 8-4: 3D plot of the signal.

Figure 8-4: 3D plot of the signal.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 25

8.2.2.1.4 Technical solution

In general the program uses the built in Javax.sound.sampled API [2] (See section

9.3.4.1) which can open and read essential information from a standard Microsoft

wav file. To perform the conversion we need to select a window size to use. This

window size must be the power of 2 (for example 2048, 4096 and so on). The

window size can also be called number of samples to read.

This window signal is then put into an FFT algorithm (see section 8.2.2.1.4.2) which

is processing the signal part and then returns a number of channels with the

corresponding amplitude or signal strength. The returned signal from the FFT now

has a set of values. This row of values is putted into a two dimensional array as a

new row. When the entire file is processed we have a two dimensional array with the

number of channels as columns, and the number of windows read from the file as

rows. Every cell holds the signal strength for each window with its corresponding

channel.

Now the values of each row in this array are distributed within a spectre of

16581375 different numbers (representing all possible colours in RGB using hex

values. See section 8.2.2.1.4.3). Each one of those values is spitted into three

different values representing the RED component, the GREEN component and the

BLUE component.

After the entire two dimensional array has been processed we have three two

dimensional arrays (red, green and blue). Those are put into a pre made API called

imageprocessing [3] which creates the final JPG image.

See Figure 8-5 for the float diagram of the technical solution.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 26

Figure 8-5: Technical solution float diagram

For the entire code see enclosure 6.

For the java documentation see enclosure 5.

Notice: In this report we are concentrating on the idea on how to convert a sampled

sound file (wav) into a jpg image, and not every programming detail.

8.2.2.1.4.1 Retrieving signal using the javax.sound.sampled API

To read the audio stream from the file we need to know where on the file to start,

and how many samples to read. The number of samples to read has to be the

power of 2 (2048, 4096 …), because the FFT algorithm requires that to work.

When you have decided what sample to start reading from and how many samples

to read you can start calculating the number of bytes to read, and the value coming

from the wav file. This calculation can be done by following this example:

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 27

Let’s say that a window size of 4096 samples has been selected and that you read

the sample size from the file. The sample size can for example be 16 bits.

1. As known one byte consists of 8 bits, that means that if the wav file has 16

bits, each sample must consist of 2 bytes. This also means that the wav file

is recorded in 16 bits. Now that the byte per sample is known, we can

calculate the number of bytes to read from the file. This is done using this

formula:

819224096 =⋅=⋅ mplebytesPerSamplesnumberOfSa bytes Equation 1

2. If the file is 16 bit the calculation of the byte value is different that it is if the

file is 8 bits. This example takes the 16 bit version since that is the sample

rate for the E.L.F.O. system. We must now check if the file is BigEdian or

not. If the file is BigEdian the high order byte comes before the low order and

for not BigEdian visa versa. The high byte is found by taking the byte value

and & it with 0xff (hex), and the low order byte is found in the exact same

way. Now remember that the high order and the low order can be placed

differently depending on BigEdian. If the file is BigEdian or not can be read

directly from the file. After converting bytes into integer values, the real

sample value can be calculated by this formula:

152
)/8(

<<
<< loworderhighorder

 Equation 2

3. Point 3 and 4 can now be repeated for every sample (4096) until all 8192

bytes have been processed into sample values. The window (containing

4096 samples) can now be used to calculate the FFT (see section

8.2.2.1.4.2).

See enclosure 6 for the source code

See enclosure 5 for the java documentation

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 28

8.2.2.1.4.2 The FFT Algorithm

The FFT algorithm (Fast Fourier Transform) is an algorithm which transforms a time

domain signal into a frequency domain signal. That means that you can go from a

signal like the one shown in figure Figure 8-6, which is a standard wav file signal, to

a signal represented as a power spectrum, as shown in Figure 8-7.The FFT

algorithm works on windows of the original time domain signal. And that window is

the one retrieved from the wav files in section 8.2.2.1.4.1. And we can continue to

use the windows size of 4096 samples. (Remember that this window size must be

the power of 2).

The FFT algorithm then produces two different tables of 4096 / 2 = 2048 samples

each. One of the tables consists of real numbers, and the other consists of

imaginary numbers. Those numbers are calculated together after the following

formula:

PIR =+ 22 Equation 3

and returned as the FFT transformed signal of the window.

As mentioned, the return for the FFT algorithm is an array consisting of 2048

numbers. Those can be called channels in the power spectrum. Now the frequency

of each channel can be retrieved.

Let’s say that the signal used consists of 22000 Hz (this can be read out of the wav

file directly), each of the channels returned from the FFT represents Hz37,5
2048

11000 =

The amplitude of a frequency can now be read from the table. If you read out the

value in column 4, you will get the amplitude of the frequency which is:

Hz48,21437,5 =⋅ .

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 29

More about the FFT transform can be found here [5]. The FFT algorithm used in the

program code can be found here [6].

Figure 8-6: Standard wav file signal

Figure 8-7: FFT processed signal for one window

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 30

8.2.2.1.4.3 Integer to RGB conversion

This part is essential to create an image. After the FFT transform of the whole wav

file, we have a two dimensional array containing wav signal amplitude values. Each

value in that array is assigned a new value, using this formula:

16777215
____min____max

____min_ •
−

−
rowtheinvalueimumrowtheinvalueimum

rowtheinvalueimumvaluecurrent

Equation 4

This value is the hexadecimal value that is used to create the three two dimensional

arrays; red, green and blue. Which each table represent the corresponding colour.

Each value is then converted to hex value. For example if we have the value

345646, this is 0x05462E in hex. Here 05 is representing the red component, 46

representing the green component and 2E representing the blue component. Those

values are converted back to standard decimal value (Example: 05 = 5, 46 = 70, 2E

= 46). Those values are used to create three arrays representing the image.

This part of the program also has a filter. This means that you can set a threshold

value. Every signal that is below this value will be black. This helps you get a

cleaner picture without a lot of noise. If you skip the threshold you will get a picture

full of different colours, and it will almost be impossible to se the interesting signal in

the picture. But be careful, if the threshold value is too high you will eliminate much

of the information in the picture.

One problem with using the hex value of RGB is that every colour is mixed with

blue, since the blue colour is to the right in the hex value. The benefit of this scale, is

that we get a high resolution on the scale with 16777215 values.

8.2.2.1.4.4 Creating the JPG image

The three arrays created by the hex conversion are being used to create the image.

This is done by using the pre created API called imageprocessing [3]. This API has

a pre designed method for creating the jpg image just by putting in the three tables;

red, green blue.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 31

8.2.2.1.4.5 Complete conversion example

Now let’s illustrate the whole process with a practical example.

For this example we are using a 16 bit file with 4866048 samples totally

(“newfile.wav”). We choose to use 4096 samples per window in this example. When

the file is opened we can start reading the first 4096 samples. When all samples in

the window are read, we have a table with 4096 columns. That table can now be

putted into the FFT algorithm which returns a new array consisting only of 2048

samples.

That array is now added as a new row in a two dimensional array. Then the same

thing is done with the next 4096 samples until there are below 4096 samples left.

We now have a two dimensional array which has 2048 columns and 4866048/4096

= 1188 rows.

Then the maximum and minimum value of each row is found. Let us say that the

minimum value is 2 and the maximum value is 700 (those values might not be

realistic, but for the example only). We can now use the equation 4 to get the new

value of each of the old values. For the minimum value we get:

016777215
2700

22 =•
−

−

For the maximum value 700 we get:

1677721516777215
2700
2700 =•

−
−

The highest value is now the maximum amplitude shown in the picture. If we now

take 16777215 and convert it into hex value, we get: 0xFFFFFF. That means; RED

= 255, GREEN = 255, BLUE = 255, which in a jpg image will be white. If some of the

values come below the threshold value, it will automatically be set to 0. This helps

us remove all the noise in the signal.

When every value in the two dimensional array has been converted, we can create

the image which in the case of “newfile.wav” will look like Figure 8-8. And there you

can see the axis on the picture. Down; you have the time axis. And from left to right;

you have the frequency axis.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 32

Figure 8-8 - Picture for newfile.wav

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 33

8.2.2.1.4.6 Displaying an image in 3D

In this part we are using a pre designed API called VISAD. After some modification

this API can take a two dimensional array with values between 0 and 16777215

(must be in decimal format).

Those values are used to display the image as a 3D drawing with the column

number as frequency, and the rows as time and the value as amplitude.

8.2.2.1.4.7 Known errors and possible improvements

There is only one error which is known at present time.

If the program is going to convert extremely big wav files, it can happen that an

OutOfMemory exception occurs. This error might occur because of an unknown

memory leak. But the program is tested in a lot of situations and the following

conclusion has been found:

If the wav file that is to bee converted has a size around 300 MB, a memory

exception occurs. It also happens if the total number of wav files to convert in

automatic mode has a total size bigger than 500 MB.

This problem can easily be avoided by splitting the big wav files into smaller parts,

and try to avoid many big files in the same folder.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 34

8.2.2.2 Neural network filtering software

The recognition program is used for identifying files. The program gets the input file

as an argument. First the file is pre-processed and then it is run trough a neural

network. If the file is recognized the file will be deleted.

To train the program, you must start the program without any arguments. There is

more information about how to use the program in enclosure 4.

See enclosure 5 for the source code.

See enclosure 6 for the java documentation.

Figure 8-9 - The GUI for training the network.

8.2.2.2.1 Tested algorithms

We have tested two different algorithms which can be used for filtering out known

signals from a signal stored as a wav file. One of them is the O-Algorithm, and the

other is the Feed-forward Back-propagation network. Both of them are described

below.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 35

8.2.2.2.2 The O-Algorithm

Before we use the O-algorithm [9] to classify the signal, we pre-process the signal

with Haar wavelets.

8.2.2.2.2.1 Pre-processing the signal with Haar wavelets

Even though a small segment of an audio signal may be unique in some sense to a

particular signal, significant variations occur. To compensate for some of these

perturbations, the Haar wavelet transform is used as a preprocessing tool. Haar

wavelets are known to have a dampening effect to rich amplitudal variations often

present in audio signal, thus presenting an average of adjacent sample values. The

family of Haar wavelets �m,n(t) is described by

)2(2)(2/
, ntt mm
nm −= −− ψψ

Equation 5

elsewhere

t

t

t 15,0

5,00

0
1

1

)(≤<
≤<

−=ψ

Where �(t) represent the mother wavelet. Here, n denotes the translations

parameter and m is the amount of scaling. The application of Haar wavelets to a

characteristic segment of a signal produces a set of N Haar wavelet coefficients,

w = [w1, w2, ... ,wj, ... ,wN] , where

nmj xw ,,ψ=
, Equation 6

and x = [x1,x2, ..., xj, ..., xN] are recorded samples of sound forming the characteristic

region chosen to represent the audio signal. The translations and scaling

parameters are integers chosen such that

m =1,2, ..., log2(N) +1,

n = 0,1, ... , | 2-m N -1|,

where | | denotes the ceiling operator. By performing this procedure for P different

signals be longing to P different classes each coefficients set

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 36

wp =[wp1, wp2, ..., wpj, ..., wpN], p = 1,2, . . . ,P

thus gives a template of Haar coefficients representing a specific audio signal. For

more information about Haar wavelets and how it works se [11].

8.2.2.2.2.2 O-algorithm (Technical description)

Figure 8-10 The O-algorithm formed as a neural network.

The O-algorithm can be viewed as a neural network (see Figure 8-10) with N inputs

and P active neurons each performing the similarity match in (Equation 7).

The O-algorithm performs a similarity match between two set of data. Similarity

between a predefined data set a = [a1 a2, …, aN] and a candidate data set b = [b1 b2, …

,bN] is calculated by:

�
=

−
=

N

j

jj ba

1
2

2
2)(

σ
χ

Equation 7

Where � is a scaling parameter representing the expected deviation between a and

b. The two data sets a and b are considered to be similar if �2 < �, where � is a

predefined threshold parameter. In practice, � can be difficult to determine and

justification of � is used instead. There can be several predefined data sets ap = [ap1

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 37

ap2, …, apN] where p = 1,2, …,P and the O-algorithm check the similarity between b

and P different data sets ap.

8.2.2.2.2.3 Training data

The data for classification is from the EMBLA project July and August 2000. There

are 13 compact discs with known signals from Hessdalen stored with the E.L.F.O.

system. These CDs can be used to train both of the networks.

All the data that the O-algorithm use is first divided in windows with a window size

powered of 2 and then transformed with the Haar wavelet transform (8.2.2.2.2.1).

The signals must also have the same samplings rate, for example 30720Hz.

8.2.2.2.2.4 Advantages with O-algorithm

This algorithm is useful for cases where there is only one known class that the

system can be trained with. In this case we have only one such classes: it’s the

identified signal (which is known) and the unidentified signal. The identified signal is

recorded and can be used for training. The O-algorithm can then compare the

unknown signal with the known signal data class and then decide if the input is a

known or unknown signal.

8.2.2.2.2.5 Known problems with O-algorithm

To identify a signal the algorithm compares the input signal to the known signals.

Before comparing the Haar coefficients are calculated to better describe the signal.

If the sum of differences is under the threshold level (θ), the signal is identified. The

algorithm takes one window at a time and compares it to a window in the known

signal.

If each window in the input signal is to be compared with every window in every

known signal that we got, we will get a large number. For example: We got 13 CDs

with known data. 1 sample takes 2 bytes. If we got 650 Mbyte on 13 CDs, we have

about 4225 million samples. The system can use a window of for example 2048

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 38

samples. This will sum up to 2 million windows which is to large if the system is

running on normal PC.

A solution to this problem is to find a characteristic part of a signal to compare with.

One way to find this characteristic part is you manually go through the file and look

for parts that repeats it self. This is very hard because it is not so easy to find a

characteristic part of the signal by looking. Another way to do this is to compare

each window to each other in a file to find what window that is most frequent. The

window most frequent is the characteristic window. The problem of this, is that the

quiet parts are often most frequent in the data files and very often this is the result of

this solution.

8.2.2.2.3 The Feed-Forward Back-Propagation algorithm

Before using the Feed-Forward Back-Propagation algorithm, is it necessary with

preprocessing of the signal. FFT transform is an existing tool in Matlab and a good

way to describe the signal. Matlab is also a good program for making a Feed-

Forward Back-Propagation network because of existing toolbox.

8.2.2.2.3.1 Pre-processing the signal with FFT transformation

This pre-processing with FFT transformation is the same as described in 8.2.2.1.4.2

8.2.2.2.3.2 Feed-Forward Back-Propagation algorithm (Technical description)

Referring to Figure 8-11 and Figure 8-12. The network functions as follows: Each

neuron receives a signal from the neurons in the previous layer, and each of those

signals is multiplied by a separate weight value. The weighted inputs are summed,

and passed through a limiting function which scales the output to a fixed range of

values. The output of the limiter is then broadcast to all of the neurons in the next

layer. So, to use the network to solve a problem, we apply the input values to the

inputs of the first layer, allow the signals to propagate through the network, and read

the output values.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 39

Figure 8-11: A Generalized Network. Stimulation is applied to the inputs of the first
layer, and signals propagate through the middle (hidden) layer(s) to the output layer.

Each link between neurons has a unique weighting value.

Figure 8-12: The Structure of a Neuron: Inputs from one or more previous neurons are
individually weighted, then summed. The result is non-linearly scaled between 0 and

+1, and the output value is passed on to the neurons in the next layer.

The Back-Propagation learning process works in small iterative steps: one of the

example cases is applied to the network, and the network produces some output

based on the current state of its synaptic weights (initially, the output will be

random). This output is compared to the known-good output, and a mean-squared

error signal is calculated. The error value is then propagated backwards through the

network, and small changes are made to the weights in each layer. The weight

changes are calculated to reduce the error signal for the case in question. The

whole process is repeated for each of the example cases, then back to the first case

again, and so on. The cycle is repeated until the overall error value drops below

some pre-determined threshold. At this point we say that the network has learned

the problem "well enough" - the network will never exactly learn the ideal function,

but rather it will asymptotically approach the ideal function

Inputs Outputs

Hidden layer

Weigted
inputs

Limiter
(Sigmoid function)

Output to
other neurons

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 40

Training algorithm:

1. Initialize weights (set to small random values)

2. Present inputs and desired output for the known signals

3. Calculate actual outputs

4. Adapt weights

5. Repeat from 2

Termination: Terminate when error is below a threshold value.

8.2.2.2.3.3 Training data

In this network we can use the same training data as we used to train the O-

algorithm (see section 8.2.2.2.2.3).

8.2.2.2.3.4 Advantages with Feed-Forward Back-Propagation algorithm

This is a network that works fine with large training data. The feed forward back

propagation network trains weights that calculate the right output. These weights are

corrected in a training progress. In this progress, we use a set of known data and

calculate the output. If the output is wrong, the weights are corrected. This means

that this kind of network can be used on big amount of data, since only the weights

are stored. Then when recognizing, the computer only has to use those weights

instead of comparing to hundreds of numbers.

8.2.2.2.3.5 Problems with feed-forward back-propagation network

The big problem for this algorithm is that the network usually must have data from

known signals and data from unknown signals. This algorithm works well if we can

train the network with data from both of the classes. Since we don’t have any data

from the unknown signals, we must train the network with only one class.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 41

8.2.2.2.4 Algorithm conclusion

The algorithm that we suppose as best of the two algorithm is the O-algorithm. That

is because of the possibility to train the network with only one known class. The O-

algorithm will work if we find characteristic signals for the known signals and then

can reduce the amount of window for comparison. The feed forward back

propagation network will not work well because of the unknown class that we are

interesting in.

8.2.2.2.5 Software structure and use of the chosen algorithm

We have considered using the filter on the inspire system. The filter can be further

developed to read windows from the input port on the soundcard, and store the

windows that are not identified. Since the filter doesn't work as well as we have

hoped, we have not developed the system to have this opportunity. With the O-

algorithm the filter will work to slow if the amount of data is too big.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 42

8.2.2.3 Scheduler

The scheduler is a simple Java programs created to manage the different tasks in

the E.L.F.O. analyze system. Its primary task is to start the different operations in a

static order. The program runs with no graphics, except text output to the operating

system consol. For the scheduler to run properly, you need to have the following

programs installed (All of them are bundled in the same installation package):

• Wav2Jpg Converter (Section 8.2.2.1)

• PSCP for Windows Consol (Section 8.2.2.3.3)

• The Neural Network Analyze Software (Section 8.2.2.2)

8.2.2.3.1 Program structure

As mentioned above, the program follows a particular order (see Figure 8-13 for

illustration, float diagram).

The program has a built in timer which prevent it from running if the clock is not

between for example 01:30 and 02:00. This is because the E.L.F.O. software stores

files in directories with the date on. When the clock passes 00:00, the E.L.F.O.

software starts on a new folder. But if the E.L.F.O. starts capturing files at 23:59:59,

it will store in yesterdays folder until the next time it starts capturing. There for the

time is set to 01:30, to prevent moving files which are not yet is finished, but you

have the ability to change that time in the setup file which you can read more about

in 8.2.2.3.2. But remember that the scheduler software does not stop if the trigger

time is not reached; it only waits until the clock passes the trigger time. You can say

that it runs in an infinite loop, which only can be cancelled by terminating the

process manually.

So, first it starts searching the folder where the E.L.F.O. software stores its wav files

(default: c:\data). Then it moves all the files in the folders, which don’t have today’s

date, with all subfolders and contents to a temporary location (for example C:\TMP,

selected by the user).

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 43

The scheduler then starts the ZIP routine, which is built in to the scheduler. All the

wav files in the different folders in the temporary directory are now compressed. If

for example C:\TMP contains the folder 28_4_2003 with four different wav files. An

archive called 28_4_2003.zip is created, and all the files in that folder are

compressed into the archive.

After the compressing is done it’s time to analyse the wav files. The scheduler starts

the analyze software. You can read more about the analyze software in section

8.2.2.2. The user can also choose not to run the analyze software. This must be

done in the setup file, which you can read more about in section 8.2.2.3.2.

Now, the scheduler starts the Wav2Jpg converter. The wav2jpg converter creates

images of the remaining wav files after the neural network filtration. Those files are

stored in a subdirectory called “Processed_Images”. Those folders are now

renamed to its parent folders name. That means that if the parent folder is named

25_12_03 the Processed_Images folder is renamed to 25_12_03.

All the wav files are also renamed in this part of the scheduler. All wav files captured

by the E.L.F.O. have a filename as the following: 12_14_23_#1.wav. In the

scheduler the # character is replaced with “NR” instead. This is because the web

browser has problems displaying filenames containing that particular character (#).

And now it’s time to start the PSCP software with the following command:

pscp.exe -r -q -pw <password> <dir_to_copy_from>

<username>@<server>:<dir_to_copy_to>

When every images in the temporary folder has been sent to a remote location all

the files in the temporary folder is deleted. Since all of the wav files have been

backed up in another folder, it’s no problem deleting the files.

Now the scheduler has finished its work, and it goes back to sleep until the next time

the clock passes 01:30. Notice that the scheduler do not exit on completion, it just

sleeps. To exit the program it must be terminated manually. It’s also important notice

that if an error occurs somewhere in the scheduler, the work is aborted, and the

scheduler goes back to start and then to sleep. It does not exit.

Please see the float diagram in Figure 8-13.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 44

Figure 8-13: The scheduler loop

For the entire program code and java documentation, please see enclosure 5 and 6.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 45

8.2.2.3.2 Program usage

Usage of the program is quit simple. The only thing you have to watch out for is that

the scheduler.setup file is correctly configured. The file should look like this:

C:\DATA – The E.L.F.O. files folder

C:\TMP – The temporary folder

C:\ELFO_BACKUP – The backup folder

hessdalen.org – The server to copy jpg files to

Italia – The username on the server

Password – The password on the server

/home/hessdalen/html/italia/images/ - The remote folder on the server.

HOURE - The houre to start the scheduler

MIN - The minute to start the scheduler

FILTER - Run the filter or not (0 or 1),

It’s made with a setup file for more flexibility. The user can now change the different

setting without recompiling the source code.

The password is not encrypted, but since the software is only going to be on a local

computer it will not be a security threat.

The program is started by running the schedulerJava.exe file.

8.2.2.3.3 Uploading files to remote location

This task is done by a tiny program called PSCP [8]. This program works as the

Unix/Linux version of SCP (Secure Copy).

To make this program work, you first have to get a cryption key. This is very

important, since the scheduler doesn’t get the key automatically, and that will make

it hang. To get that connection key you can simply run a small test transfer to the

remote system you are going to use. Try for example the following command: pscp

–r <testfile> username@server:<remote folder>.

This command will ask you if you would like to store a server key. Please answer

yes, and you are ready to use the pscp program in the scheduler.

Read more about PSCP at [8].

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 46

8.2.2.3.4 Compressing files

The compression is done by a built in Java Zip routine, which can operate in

Unix/Linux as well as Windows. The routine is compressing all selected files into a

archive of a desired name. The compression is set to maximum, to save space on

the hard drive. The compressed file will be a standard .zip file which can be opened

and viewed in any zip compatible program.

Various testes have indicated that the wav files are compressed up to 7 times using

this algorithm. That means that if a file is 15 MB of size, it’s compressed down too

14,2
7

15 = . And that helps a lot, when it comes to saving space on the disk.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 47

8.2.3 Webpage

The web page is crated on www.hessdalen.org/italia. This page is created to display

all interesting signals coming for the E.L.F.O. system in Hessdalen, Norway. The

web page is created in a way so that when the scheduler has uploaded new jpg

files, they will automatically become visible on the web site. This page only contains

the two dimensional pictures and no 3D features.

The pictures are sorted into different catalogues, having the creation date as name.

Every file has its creation time and from which antenna (1 or 2) the signal was

recorded.

The web page is created in the PERL language.

Source code can be found in enclosure 7.

8.2.3.1 Web-Page structure

The web page is spitted into three parts. First there is a page which is displaying all

the directories stored in the image directory on www.hessdalen.org. Those

directories are displayed as the following example: 12 of April 2003. Each of the

directories is clickable and will take you to a new page which displays the content of

the folder.

In the content display page you will receive a list with all the files in the selected

directory. On each file you will get information on when the file was captures (clock),

remember that the folder holds the date when the file where captured. You will also

get information on which antenna the signal where captured on (1 or 2). And last

you will get the filename. A directory on the web page could look something like this:

Alarm occured: On antenna number: Captured Picture:

11 : 21 : 39 1 11_21_39_NR1.jpg

11 : 21 : 39 1 11_21_39_NR1_2.jpg

When clicking one of the created pictures. The selected picture will show in a new

page.

You can see the different scripts in enclosure 7.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 48

8.2.3 Remote administration

The E.L.F.O. system must have the opportunity to be administrated from a remote

computer. There are several programs for remote administration that are already

developed. Many of these programs can be used for this system.

We have tried to run the E.L.F.O. software on different windows system (Section

8.1). The software runs best on Windows XP. This operating system has remote

administration built into the system. This is not activated by default, but you can read

how to set this up at this site: [12]. The client software is also included in XP, but if

you want to us a different Windows system, you can download the client at this site

[12]. This program is found in the start menu, under “Start Menu-> Programs->

Accessories-> Communications”.

This program gives the user a graphical view of the remote machine and also has

the possibility to transfer files from the client to the host computer.

The logon screen for this program can be seen in Figure 8-14.

Figure 8-14 - The logon screen to remote desktop

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 49

8.3 Conclusion

Our projects, E.L.F.O. analysis, consist of further develop on the E.L.F.O. system.

Our system compressed and takes backups of all the wav files that are stored and

then analyse the signal. If the signals is a known signal the files is deleted. If the

signals are unknown the signals are converted to images. All the images of

unknown signals are then sent to www.hessdalen.org for presentation on the web.

All the system goes automatically and can run on a computer in Hessdalen.

The problem in our system is the filtering algorithm in the neural network. We have

tried two different algorithms, the O-algorithm and Feed-Forward Backpropagation

network. In the O-algorithm the problem is to find parts in the signal that are

characteristic for the whole signal. Without characteristic parts the amount of

windows are too big, and the O-algorithm will work slowly and not well. In the Feed-

Forward Backpropagation network the problem is that we don’t have the unknown

signals and then we only have data from one class to train the network with.

The algorithm that we suppose as best of the two algorithm is the O-algorithm. That

is because of the possibility to train the network with only one known class. The O-

algorithm will work if we find characteristic signals for the known signals and then

can reduce the amount of window for comparison.

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 50

9 Project scheme

9.1 Milestone chart

See enclosure 1.

9.2 Activity and responsibility chart for the project

9.2.1 Activity chart

R = Responsible
C = Carries out
I = To be informed
A = Approve

FAT TEXT = Main tasks

Ja
n

S
te

in
ar

 K
vi

le
sj

ø

La
rs

 M
ar

tin
 D

ob
be

C
hr

is
tia

n
A

. B
rå

th
e

C
on

tr
ac

to
r:

S
te

lio
 M

on
te

bu
gn

ol
i

C
ou

nc
ilo

r:
E

rli
ng

 P
. S

tra
nd

Act. Nr. Activity 1 2 3 4 5
1 Reports R
1.1 Pre project report C C RC IA IA
1.2 System development report RC C C IA IA
1.3 Final report C RC C IA
2 Web Site R
2.1 Layout C RC
2.2 Contents C RC
3 Needed equipment R
3.1 E.L.F.O. system hardware RC C
3.2 E.L.F.O. system software (existing) RC C
3.3 Other equipment (ex. own) RC RC RC
4 Existing E.L.F.O. System R
4.1 User manual of existing software RC C
4.2 Debugging the existing software C RC
5 E.L.F.O. Analyzing system R
5.1 The Neural Network C RC C
5.2 WAV2JPG converter RC
5.3 Scheduling RC
5.4 Compressing RC
6 EXPO R
6.1 Presentation RC C
6.2 Stand C RC
6.3 Equipment C RC
6.4 Catalogue RC

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 51

9.2.2 The responsibility distribution

The main responsibility is shown only.

Jan Steinar Kvilesjø:

1. System development report

2. Own or other needed equipment

3. User manual for existing E.L.F.O. system

4. EXPO presentation

5. Scheduling

6. Compressing WAV files

Lars Martin Dobbe:

1. Final report

2. Existing E.L.F.O. system hardware

3. Existing E.L.F.O. system software

4. Own or other needed equipment

5. The Neural Network

6. EXPO stand

7. The EXPO catalogue

Christian Andrè Bråthe:

1. Pre project report

2. Web site layout

3. Web site contents

4. Own or other needed equipment

5. Debugging the existing E.L.F.O. system

6. WAV2JPG converter

7. Needed EXPO equipment

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 52

9.3 Project budget (sketch)

Travel costs

Cost for each kilometre kr 2,41

Total amount of kilometres 4800,00

Total travel cost kr 11 568,00

Stand material

Decoration kr 806,00

Refreshments kr 403,00

Clothing kr 1 612,90

Total stand cost kr 2 821,90

Salary

Cost for each hour kr 403,00

Number of persons 3

Number of hour for each person 375

Total cost for each person kr 151 125,00

Total salary cost kr 453 375,00

Total project cost excluded tax kr 467 764,90

Tax 24 %

Total project cost included tax kr 580 028,48

In EURO (�) that makes: 77337,13

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 53

10 Abbreviasjons survey

Abbreviation Stands for / is

E.L.F.O. Extreme low frequency observer

JPG A compressed image format. Most common used on web

graphics

SIV Serndip IV format. Developed on Barkley university, but probably

only used by IRA today.

WAV Waveform sound format. The simplest way to store audio.

CNR National Research Council

IRA The Institute of radio astronomy

USB Universal Serial Bus (common on all new PC's)

kHz Kilo Hertz. 1000 Hertz

ELF Extremely low frequencies

VLF Very low frequencies

ADC Analog to digital converter

CVI Technology created by National Instruments. It is C language for

Virtual Instruments.

ZIP A compressed package which can be used on any file format

GB Giga Byte. Used to describe hard drive size.

dBm Signal strength.]__1000log[10 milliwatsinpower−•

FFT Fast Fourier Transform

DAQ Digital Acquisition

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 54

11 Sources

[1] www.ni.com/linux - DAQPad-6020 under Linux.

[2] http://java.sun.com/j2se/1.4.1/docs/api/javax/sound/sampled/package-

summary.html - javax.sound.sampled.

[3] http://www.ia.hiof.no/bildeb/imageprocAPI/ - Imageprocessing API.

[4] http://mindprod.com/jglossendian.html - Little and Big Endian

[5] http://www-2.cs.cmu.edu/afs/andrew/scs/cs/15-

463/pub/www/notes/fourier/fourier.pdf - About the FFT algorithm.

[6] http://ling.upenn.edu/~tklee/dsp/FFTDemo.html - Code for the FFT.

[7] http://www.ssec.wisc.edu/~billh/visad.html - Visad (3D in Java).

[8] http://www.chiark.greenend.org.uk/~sgtatham/putty/ - PSCP information

[9] Martin Kermit, Åge J. Eide, Audio signal identification via pattern capture and
template matching

[10] http://www.ni.com/pdf/products/us/3daqsc215-218_190_185-186_221-
228_233-237.pdf - Ni-DAQ 6020 USB Device

[11] ����������	
������
�������������

��
�����������������
�������

[12] http://www.microsoft.com/windowsxp/pro/using/howto/gomobile/remotedeskt
op/default.asp
�����
������� �
� ��������
� �� ��

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 55

12 Picture references
Figure 5-1: Hessdalen station ..7
Figure 6-1: Test setup overview ..8
Figure 6-2: E.L.F.O. system overview...9
Figure 6-3: Correlation unit overview ...10
Figure 6-4: The E.L.F.O. correlation unit ..11
Figure 6-5: E.L.F.O. GUI structure ...12
Figure 6-6: Basic E.L.F.O. software user interface. ...14
Figure 8-1: Figure of system overview. ...20
Figure 8-2: E.L.F.O. system float diagram ..21
Figure 8-3: Wav2Jpg Converter – GUI overview diagram.......................................23
Figure 8-4: 3D plot of the signal. ..24
Figure 8-5: Technical solution float diagram...26
Figure 8-6: Standard wav file signal..29
Figure 8-7: FFT processed signal for one window...29
Figure 8-8 - Picture for newfile.wav..32
Figure 8-9 - The GUI for training the network. ...34
Figure 8-10 The O-algorithm formed as a neural network.36
Figure 8-11: A Generalized Network. ...39
Figure 8-12: The Structure of a Neuron...39
Figure 8-13: The scheduler loop..44
Figure 8-14 - The logon screen to remote desktop...48

 Final Project H03D03
 Final report

http://sylfest.hiof.no/~d200303/ Page 56

13 Enclosure Index

Enclosure number: Title:

1. Milestone chart

2. E.L.F.O. Software: Debug Report

3. E.L.F.O. Software: User Manual

4. User Manual

5. API documentation

6. Source Code

7. www.hessdalen.org: Web Site Scripts (Source Code)

