Flytrafikk over
Hessdalen (BO14-
102)

Gruppe BO14-G12

Bacheloroppgave, Avdeling for informasjonsteknologi, Hegskolen | @stfold

Peter Christopher Bach
Robin Holm Hi@
Daniel Dohrmann Nilsen 18. mai 2014

HOGSKOLEN | OSTFOLD

Awdeling for Informasjonsteknologi
Remmen

1757 Halden

Telefon: 69 21 50 00

URL: wwwhiafna

/|

BACHELOROPPGAVE

Prosjektkategori: X Fritt tilgjengelig

Bachelor

Omfang i studiepoeng: Fritt tilgjengelig etter

20 Poeng

Fagomradet: Tilgjengelig etter avtale med

Dataingenigr

oppdragsgiver

Tittel: Dato (leveranse):
Flytrafikk over Hessdalen 22.05.14
Forfattere: Veileder:

Daniel Dohrmann Nilsen
Peter Christopher Bach
Robin Holm

Bgrre Stenseth

Avdeling / Program:
Avdeling for informasjonsteknologi

Prosjektnummer:
BO14-102

Oppdragsgiver:
Erling P. Strand

Kontaktperson hos oppdragsgiver:

Ekstrakt:

| Hessdalen kan det til tider observeres lysfenomen som ingen hittil har funnet en forklaring pa. Derfor er det
satt opp utstyr som prgver a fange opp og analysere disse hendelsene. En potensiell kilde kan vare
flytrafikken over omradet. En tidligere prosjektgruppe ved Hi@ har satt opp to separate systemer, ett
lysdeteksjonssystem og et flydeteksjonssystem. Sistnevnte samler inn data om fly i omradet og logger dette til
en database, slik at det kan avklares om et detektert lysfenomen var et fly eller ikke.

Var oppgave gar ut pa a hente ut denne informasjonen og fremstille det pa en webside. Her finnes det mange
mulige Igsninger, noen mer gunstige enn andre. Derfor dreier rapporten seg i hovedsak om hvilke ulike
teknologier som kan tas i bruk for a Igse de ulike problemstillingene, samt en redegjgrelse for hvordan vi har

valgt a gjgre det, og hvorfor.

Forord

Var oppgave gikk ut pa a sette opp en webside som lot brukeren se flytrafikk over Hessdalen i et valgt
tidsrom. Dette var basert pa et system satt opp av en tidligere prosjektgruppe, som logger data om
flytrafikken til en database. En enkel oversikt over system ser du i Figur 1.1: Enkel systemoversikt.

Figur 1.1: Enkel systemoversikt

VM Host
- Flydeteksjonssystem
- Lysdeteksjonssystem
H< Hessdalen AMS
Y S
v
A
§ o

Vart System

1477 2

Sluttbruker

Hessdalen AMS (Automatic Measurement Station) samler inn data om flytrafikken i omradet via en
sensor. Dette sendes videre til en dedikert maskin plassert pa oppdragsgivers kontor, her kalt VM
Host. Denne inneholder bade fly- og lysdeteksjonssystemene. Vart system presenterer dataene
produsert av flydeteksjonssystemet pa en webside. Sluttbruker kan sa bruke data fra
lysdeteksjonssystemet og sammenlikne dette med dataene presentert av vart system. Slik er det
mulig 3 avgjgre om et lysfenomen var et fly. Var oppgave forholdt seg i hovedsak til
flydeteksjonssystemet, fordi lysdeteksjon og detaljer rundt dette ikke var direkte relevante for var
Igsning, selv om det til syvende og sist er det som er malet med oppgaven.

Sammendrag

Forskning pa lysfenomenet i Hessdalen har foregatt i mange ar. Flere bacheloroppgaver har vaert
gjennomfg@rt opp gjennom arene, alle med hensikt a fa en dypere forstaelse for hva dette fenomenet
forarsakes av. Sist var ble det kjgrt et prosjekt med hensikt a bruke kameraet plassert i Hessdalen til &
analysere bildene tatt av lysfenomenet. Som et grenprosjekt til dette ble deteksjon av fly innfart,
med den hennsikt a filtrere ut flytrafikk som en potensiell kilde (/feilkilde). Dette prosjektet ble aldri
helt fullfgrt, men var vellykket i & sette opp en flydetektor som logger data til en database. Det er her
vart prosjekt kommer inn i bildet.

Vi bygger videre pa systemet de satt opp, for a gjgre det mulig a effektivt hente ut og analysere disse
dataene. Flytrafikk over omradet er betydelig. Dette far store konsekvenser for utviklingen av vart
system, som ikke bare ma gjgre det enkelt og effektivt for brukeren a finne frem i havet av
informasjon, men som ogsa ma forholde seg til tekniske begrensninger i alle delene av systemet.
Databasen, webserveren og klientapplikasjonen som alle kjgrer pa hvert sitt system ma tale
pakjenningene av a behandle relativt store datamengder. | tillegg vil ogsa prosjektet naturlig nok bli
sterkt pavirket av mulighetene og begrensningene til flydeteksjonssyetemet og databasen, som vart
produkt bygger direkte videre pa. Dette fgrer til at vi i var oppgave ma ta hensyn til begrensningene i
alle de involverte systemene, og hvilke krav som er rimelige a stille til disse. Slik forebygger vi
eventuelle problemer som kan oppsta. Dette er med malet & minimere innvirkningen problemer i
andre systemer kan pafgre vart eget.

Etter at produktet var ferdig utarbeidet ble det integrert med hovedsiden for Hessdalenprosjektet.
Rapporten var omtrent ferdigstilt da dette skjedde, slik at hoveddelene av rapporten er utarbeidet
uten hensyn til dette. Derfor har vi inkludert en kort notis om denne flyttingen der det er relevant,
selv om det hadde liten direkte innvirkning pa produktet og rapporten.

Takk Til

Takker Dick Olausson fra den tidligere prosjektgruppen for a ha veert hjelpsom og lett tilgjengelig nar
vi hadde sp@grsmal angaende fly- og lysdeteksjonssystemene, samt databasen fra fjorarets
bacheloroppgave, og for a ha stilt til hjelp nar det gjaldt modifikasjoner til dette systemet.

Innhold

[0] e U TP PP PPPPPPPPPPPROt 2
Y1001 00T Te [- PP PPPPPPPPPRS 3
1S 1 P TSP TUPR 4
Ta] o o] [IO PP PPPPPPPPPPPRRNt 5
FI U IS O e aaaaaaaaas 8
OrdDESKIIVEISE ...ttt s e s e e e e s es 9
Lo INEOAUKSJON. e 10
1.1 PrOS EKEEIUPPEN e, 10
1.2 (0 o] oo L= Yoy o AV T 10
1.3 (0] o] o Yo L= Y= <1 10
1.4 Formal, [everanser 08 METOTEuuviiiiiee et e e e erre e e e e e e e etrraaeeaee e 10
1.4.1 (0] 400 F-1 IO T O T T PO P PO P PP TPPPTTPRO 10
1.4.2 =T T 1= 11
1.4.3 YTl FoTo [T P PP PP PPOPPPPPRPPPPPR 11

1.5 RAPPOIESTIUKLUN .. 11

2. Analyse av problemstillinger ... 13
2.1 Fly- og Lysdeteksjonssystemet.......ccccooiiiiiiiiii 13
2.1.1 Oppgradering av lys- og flydeteksjonssyStemccceeieiiiiiiiiiiiciccccec e 13

2.2 Brukergrensesnittel. ... 14
2.2.1 Valg av Kartprogramvare.........ccoeeeee e, 14
2.2.2 AnIMasjon av fly.....cooooei i 15
2.23 Hvordan vise frem data fra databasen........cooceeeiiiiiiiiiiiiiie e 15
2.2.4 Verktgy og hjelpefunkSjoner.........uuieiiiiii i 16

2.3 Database og backend...........cooo i 17
231 Relevante KOIONNEToii ettt e 17
2.3.2 Feilogmangleridata.......ccccoiii 18
2.3.3 Dataflyt.. .o 19
2.34 Prosessering av data, server vs. kKlient..............ccccc 21
2.3.5 ANalyse av data......cooeeeeieiiee e 21
2.3.6 Gruppering av fly i en overflyVning...... ... 23

2.4 Plassering og drifting av SYyStemMEer..........coooiiiiiiiiii 25

24.1 (DY =] o = LY =TT 25

2.4.2 FlydeteKsjonSSYStemM ..o, 25
243 WEDSEIVET ..ot e e e et e e e e e e e s e eeeeeeeeeas 26
25 FAN g oT=TTe 1 g =1 o o [PP PO P PP UPPPPPPPPPPPRN 26
2.5.1 AV L= g o] 0] o F=Ta Lo L £= T = USRS 26
2.5.2 Delegering av arbeidSOpPEaVer.....ccciiiiiiiii e, 27
2.53 Loggf@ring avarbeid ... 27
2.54 Programmeringsfilosofi......ccccoiiiiiii 28

3. Planlegging 08 UtFOrMINGeeviiiiiiiiiiiiiiiiiiieeeeee ettt e e e eeeeeeeeeeeeeeeaseeaeesseesseesaesssssssssssssesnnrnnes 29
3.1 Fly- og Lysdeteksjonssystemet ... 29
3.1.1 Oppgradering av lys- og flydeteksjonssystemccoeceeiiiiiiiiiiiiiccecccc 29
3.1.2 Samplingsfrekvens 0g datamengde....... ... 30
3.2 Brukergrensesnittel. ..o 31
3.2.1 Valg av Kartprogramvare.........ccoeeeeee e, 33
3.2.2 ANIMaAsjon av fly....coooorii i 33
323 Hvordan vise frem data fra databasen........cooccveeeiiiiiieiiiiiie e 33
3.2.4 Verktay og hjelpefunksjoneruvviiiiiiii e 33
3.3 Database og backend..........cooo i 41
33.1 Relevante KOIONNEToii e s e 42
3.3.2 Feil ogmangleridata......ccccooiiiiii 43
3.33 Dataflyt. e 46
3.3.4 Prosessering av data, server vs. klient.............cccccc 47
3.35 ANalyse av data......ccooeeeeeeieee e 50
3.3.6 Gruppering av fly i en overflyVning............iiiccc 51
3.4 Plassering og drifting av Systemer..........cooiiiiiiiiii 54
34.1 DatADASE .ttt st e e st e e s br e e e s nreeeeean 54
3.4.2 FlydeteksjonssyStemMccoi i 55
343 WEDSEIVET ..ttt ettt et e e sttt e e s e e s s mreee e sares 55
3.5 ArbEIASMETOUE. ..ot e e e e e e 56
3.5.1 Versjonshandtering........cccooeee e 56
3.5.2 Delegering av arbeidSOpPPEaVer......cccceiiiiiii e 57
3.5.3 Loggf@ring avarbeid ... 57
3.5.4 Programmeringsfilosofi........cccoiiii 58

S 1 41 o] 118 0= o =] o o S 60

4.1 Flydeteksjonssystemetoci i, 60

41.1 SYSEEMOVETSIKL ..ttt s 60
4.1.2 SVAKNEEET ... e e e e e e e e e e e as 62
4.1.3 SAMPIINGSTIEKVENS ..t s 62

4.2 (D)] o T 1 I PSP U PP PPPRPPPPP 63
4.3 Backend - KOde pa WEDSEIVEIENuuieiieiiiiceeeee ettt e e e e a e 67
43.1 DatabasetynNning......ccooiiiiiiii 67
4.3.2 GrUPPEIING AV Ty e s 68
433 JSON Lttt e e e e e et e e e eeeeaan 69
43.4 OMA@PINg aV KOIONNENAVNuuiiiiiiiiii s 70

4.4 Frontend - Kode pa Klientmaskinenccooiiiiiiiiiiiii it 70
441 Code DENING ... e e 70
4.4.2 Webside GUI 0g fUNKSJONETuuuueeiiiiiii s 79

4.5 SYSEEMOVEISIKL ..vvteiiiiiiiiit s 81
45.1 HOVEATIEKKeeeeiieeeeee et e e e e 82
4.5.2 FIISErUKEUT ettt et et e s s e s ssreeeenaes 83

LT Ty u o= o Y= XY =1 U= T oY PP PPPPPPPPRt 87
LS 11 (U1 o o HE PP PPPPPPPRS 88
6.1 (0] 0o T Te [o [0 o -1 HO TR PUUPRRRR PP 88
6.2 Levert Produkt........ooi i 89
6.3 Evaluering av arbeidsmetode..........ccoo i 90

I o111 {1V o I PPPPPPPPRS 92
T = 1101 Lo T={ = o] 1 1Y 2P PPPPPPPPRt 93

Figurliste

Figurer:

Figur 1.1: Enkel systemoversiKt......cooeeeeeiieiiiic 2
Figur 2.1: FlIGhtRAAAr24 ..., 14
FIgUr 3.0 DatamEnge. ..o o e e e 30
Figur 3.2: PUNKLAENSITEL .o, 30
Figur 3.3: Forbedret utvalg av punkter ..., 31
Figur 3.4: SKiss€ aV BrenseSNitl.....cccceeeeeeeeiee e, 32
Figur 3.5: EKSEMPEl PA NEATMAP ..vvvviieieie ittt e e e e e e et r e e e e e e e e esatrbraeeeeeeeennnes 34
Figur 3.6: Sammenliking, rettlinjet og buet path..............ccc 36
Figur 3.7: Vektorikon for fly...... e 36
FIGUI 3.8 FIY St iiieii e 37
Figur 4.1: SYystemMOVEISIKL ..ccceeeeeeeeeeeeeeeeeeeeeeeee 61
Figur 4.2: Konfigurasjonsfil, flydeteksjonssystemccccceeiiiiii 62
Figur 4.3: JeVNT ULVAlg e 68
Figur 4.4: UJEVNt UtVAlg ..o 68
Figur 4.5: InformasjonsvindU.......ccooeeeeeeieecieeccceceee e, 71
FIgUI 4.6: AMS TKON ..., 73
Figur 4.7: InterpolasjonSOPPEaVE 2 ...cccceeeeeee e 74
Figur 4.8: Tidsmanipulatorccooeeeeeeeeee e 75
Figur 4.9: AMS VINKEl .. 76
Figur 4.10: Heatmap Med Kildecooeeeeeieiii e, 78
Figur 4.11: WebsideelemMEeNter....cccooeeeee e 79
FIgUI 4.0 2 TiASVRIGOI oo, 80
FIGUI 4.13: VAIT SYSTEIM Loeeiiiiiiiiiiiiiieeeeee e ettt e e e e e ettt e e e e e e e e e s eabaaeseeaeeeseaattaaaaeeeeesaaassssasaeaaesanannns 82
Tabeller:

Tabell 2.1: DatabaselayouUt ..o 17
Tabell 3.1: DatabasekolONNEr 2.......uiiiiiiiiiiieee e e s et e e e e e s s s bbreeeeeeessananes 49
Tabell 4.1: Eksempeldata, ulike fly ... 64

Eksempler og kodelister:

Eksempel 2.1: Sammenlikning av XML OZJSON ... 20
Eksempel 3.1: INterpolasjonSOPPEAVEcoeeeeeeeiee e, 40
EKSEMPEI 4.1 JSON ... 69
Eksempel 4.2: Syntaks for informasjonsvindu............cccooooii 72
Formler:

FOIMEl 4. L HaVEISINE oo ee oo e e e e e e e e e e e e e e e e e e aaaaeas 77

Ordbeskrivelse

Ord Beskrivelse

Flight, Et fly som foretar en enkelt reise over det aktuelle omradet. Hvis
Overflyvning, det samme flyet kommer tilbake ved en senere annledning vil dette
Rute bli klassifisert som en ny overflyvning.

Hessdalen AMS, Malestasjonen plassert i Hessdalen. Denne inneholder kameraer og
AMS, ulike sensorer, blant annet flysensoren som er kilden til dataene vi

Automatisk Malestasjon,
Automatic Measurement
Station

bruker i var oppgave.

Sighting, Et enkelt punkt der flyet er blitt "observert" og loggfart. Flere slike

Punkt, punkter utgjgr til sammen en overflyvning.

Observasjon,

Flyobservasjon

Marker Et objekt som vises pa kartet i form av et bilde. Dette kan for
eksempel representere en enkelt flyobservasjon.

Heatmap En visningsmodus for kartet. Individuelle fly vil ikke vises i denne
modusen, i stedet vises et farget lag over kartet, der fargen
samsvarer med sammenlagt flyintensitet over omradet.

Hardkodet Oppfearsel eller verdier som er en fast del av programkoden og ikke
lett kan endres.

Issue, | var sammenheng bruker vi dette om formelle gjgremal og et

Issuetracker program for & behandle disse. Hovedsakelig en enkeltstdende del

som skal implementeres i koden, eller noe som skal forandres:
"Gjgre det mulig for brukeren a bestemme hvilken ikon som brukes
for en Sighting", er et eksempel pa et Issue.

Repositorium ("Repo"),
Commit,

Changeset,

Push

Kildekodekontroll som gjgr det enklere a organisere og ta vare pa
eldre versjoner av kodebasen.

En commit/changeset er en formell gruppering av forandringer
som er gjort pa kodebasen.

Changesets kan pushes til det sentrale repositoriet og bli allment
tilgjengelig. Fgr dette skjer, er forandringen lokal hos den aktuelle
utvikleren.

Fly- og lysdeteksjonssystemer

Dette henviser spesifikt til de to systemene utviklet av den tidligere
prosjektgruppen, de systemene vi forholder oss til. Det er altsa ikke
snakk om potensielle andre lysdeteksjonssystemer eller sensorer i
Hessdalen. Disse er begge programmer som kjgrer pad samme
maskin.

VM-Host

Et begrep brukt om den dedikerte maskinen pa oppdragsgivers
kontor som fly- og lysdeteksjonssystemene kjgrer pa. Denne kjgrer
ogsa Windows pa en virtuell maskin(VM), som inneholder en
dekoder for dataene fra flytrafikken, derav navnet.

1. Introduksjon

| dette kapittelet gir vi en oversikt over oppgaven var, samt strukturen for resten av rapporten.

1.1 Prosjektgruppen

Gruppen bestar av tre personer: Daniel Dohrmann Nilsen, Peter Christopher Bach og Robin Holm. Vi
har jobbet sammen med de fleste fag helt fra vi tok forkurs for ingenigrutdanning i 2010/2011, frem
til denne bacheloroppgaven. Vi har alle den samme kompetansen som inkluderer blant annet
behandling av databaser samt generell programmering i flere sprak.

1.2 Oppdragsgiver

Oppdragsgiveren til prosjektet er Erling P. Strand. Han er hggskolelektor ved Hi@ og har veert
involvert i lysfenomenet i Hessdalen i mange ar. Han har ogsa vaert veileder for en rekke ulike
bacheloroppgaver som er blitt gitt i forbindelse med dette.

1.3 Oppdraget

En tidligere prosjektgruppe ved Hi@ har satt opp bade et fly- og et lysdeteksjonssystem, der
forstnevnte tar i bruk en flydetektor satt opp ved den automatiske malestasjonen i Hessdalen. Denne
tar inn informasjon om forbipasserende fly og logger dette til en database. Var oppgave gar ut pa a
hente ut dataene fra flydeteksjonssystemet og presentere dem pa en webside pa en gunstig mate,
slik at det kan avklares om en lysobservasjon i lysdeteksjonssystemet var et fly.

Sluttproduktet blir en webside med et kart som viser flytrafikken i et gitt tidsrom, j.fr. Flightradar24
(Flightradar24 AB, 2014). Det skal vaere mulig for brukeren a sette et start- og sluttidspunkt, og
deretter skal ikoner som representerer flytrafikken i dette tidsrommet plasseres ut pa kartet. Disse
ikonene skal kunne klikkes pa for a gi mer utfyllende informasjon. Alt dette hentes direkte fra
informasjonen lagret i databasen.

1.4 Formadl, leveranser og metode
| delkapitlene under gir vi en kort presentasjon av malet med oppgaven og arbeidsmetodene vi tok i
bruk for & oppna dette.

1.4.1 Formal

Formalet med oppgaven er a detektere og forsta lysfenomenene som forekommer i Hessdalen, der
var oppgave spesifikt gar ut pa a gjgre det lettere a avklare om detekterte lysfenomen bare var et
forbipasserende fly.

10

Dette oppnas ved a sette opp en webside som lar brukeren fa oversikt over flytrafikken i et valgt
tidsrom. Det skal vaere lett for brukeren a hente ut de aktuelle dataene, og fa all relevant informasjon
for a sa kunne sammenlikne dette med et detektert lysfenomen som foregikk pa et gitt tidspunkt.

All relevant informasjon fra databasen skal knyttes opp mot flyobservasjoner som blir representert
som ikoner pa kartet. Dette kan for eksempel veere flyhgyde, vinklelen fra basestasjonen og opp til
flyet, fart, osv. Disse er for a videre kunne spesifisere hvor og i hvilken tilstand flyet befant seg i pa
det aktuelle tidspunktet, slik at det blir lettere a bruke dette som en filtreringsmetode.

Merk ogsa at disse dataene kan ha en annen funksjon en bare bortfiltrering av feilkilder, for det er
ikke utenkelig at det kan veaere en direkte sammenheng mellom flytrafikken og disse lysfenomenene.
Kanskje fly som flyr i en spesifikk hgyde ofte forekommer pa samme tid som et lysfenomen? Kanskje
data om flytrafikken pleier a veere mangelfull rundt tidspunktet der et lysfenomen har oppstatt?
Dataene kan ha mange bruksomrader, derfor er det viktig at vi presenterer sa mye data som mulig,
da vi ikke har noen forutsetninger for a bestemme hva som er relevant med tanke pa bruksomradet.

1.4.2 Leveranser

Hovedresultatet av prosjektet vil vaere en webside som gjgr det mulig for brukeren a analysere
flytrafikken over Hessdalen i tidsrom brukeren selv bestemmer. Selve rapporten som beskriver
systemet, og hvordan vi kom frem til var Igsning er ogsa en stor del av leveransen.

1.4.3 Metode

Vi har en relativt handfast problemstilling med mange mulige Igsninger pa det samme problemet.
Derfor blir en av vare stgrste oppgaver a ta gode valg nar det gjelder de ulike teknologiene vi har til
radighet. Var "metode" blir sdledes & argumentere grundig for og mot de ulike Igsningene vi har, da
selve implementeringen av disse er relativt uproblematisk.

Det skal ogsa nevnes at vart sluttprodukt er et stort program bestdende av mange komponenter som
alle skal kommunisere med hverandre. Det kan vaere problematisk a delegere ut arbeidsoppgaver nar
man snakker om programmering av denne typen, derfor har vi hovedsakelig en utnevnt person som
tar for seg den overordnede programmeringsjobben. Lgsningene fremkommer sa i fellesskap, men
det er hovedsakelig en person som tar seg av implementasjonen. Dette er med unntak av mindre
arbeidsoppgaver som for eksempel utarbeiding av algoritmer for 3 Igse spesifike problemer, som
godt kan behandles som en separat arbeidsoppgave uten at dette hindrer fremgangen i prosjektet.

1.5 Rapportstruktur
Kapittel 2: Analyse av problemstillinger

Her gir vi en grundig oversikt over oppdragsgivers gnsker og kravene til oppgaven generelt, og hvilke
muligheter vi har for & implementere disse. Her er det mange alternative teknologier og metoder for
a Igse en gitt problemstilling, derfor gar vi grundig til verks med a se pa de ulike alternativene. Merk
at direkte valg av teknologier og Igsninger vil bli dekket i senere kapitler, her presenteres bare
alternativene med sine fordeler og ulemper. Bakgrunnen for denne oppdelingen er at kapittel 2 er
ment a gi en overordnet oversikt over en gitt problemstilling, med alle muligheter vi har til radighet.
Slik far man en bedre kontekst og forstaelse for valgene vi tok, og hvorfor. Disse blir sa dekket i detalj
i kapittel 3, med begrunnelse og forklaring av valgene vi tok. Merk at det er direkte sammenheng

11

mellom nummerering av delkapitlene i kapittel 2 og de i kapittel 3. Det vil imidlertid veere flere
tilskudd i kapittel 3.

En stor del av analysen gar ogsa pa vart forhold til den tidligere prosjektgruppen og deres system.
Merk ogsa at oppgaven gitt i prosjektbeskrivelsen er relativt kortfattet, men at mange utvidelser av
var oppgave, samt forandringer i det tidligere systemet, kan gjgres. Derfor tar vi i dette kapittelet
ogsa opp hvordan vi begrenser omfanget av var oppgave med tanke pa slike potensielle utvidelser.

Kapittel 3: Planlegging og utforming

Etter a ha gitt en oversikt over mulige teknologiske og konseptuelle Igsninger, med fordeler og
ulemper, i kapittel 2, tar vi i kapittel 3 opp de faktiske Igsningene vi valgte a bruke, samt
begrunnelsen bak disse. Som oftest vil et delkapittel i kapittel 3 ha et direkte relatert delkapittel i
kapittel 2, som gir en overordnet oversikt over problemstillingen. Ut ifra dette utarbeider vi sa en
plan for hvordan Igsningen skal giennomfgres.

Kapittel 4: Implementasjon

| dette kapitelet ser vi pa hvordan Igsningene er implementert og hvordan disse er knyttet sammen.
Altsa en full bekrivelse av systemet og dets komponenter.

Kapittel 5: Testing og evaluering

Kapittel 5 tar vi for seg de ulike testfasene prosjektet har gjennomgatt, og resultatene av disse.
Deretter konkluderes kapitlet med en evaluering av hvor godt produktet lever opp til oppdragsgivers
og vare egne krav.

Kapittel 6: Diskusjon

| dette kapittelet ser vi pa sluttproduktet, og stiller spgrsmal ved om det inneholder den
funksjonalitet som er ngdvendig for a Igse problemstillingen det er laget for. Altsa om systemet ble
utformet hensiktsmessig til analyse av flytrafikk, med bakgrunn i lysfenomenene i Hessdalen.

Her sammenlikner vi sluttproduktet med malene satti 1.4, og ser om kravene vi satt blir oppfylt.

Vi ser ogsa pa om oppdragsgiver er forngyd med sluttproduktet, og om det er noe som kunne ha blitt
forbedret.

Til sist snur vi ogsa dialogen mot oss selv, og ser om vi er forngyd med produktet vi har levert, hva vi
har laert, og eventuelt hva vi hadde gjort annerledes hvis vi skulle arbeidet pa et liknende prosjekt
igjen.

Kapittel 7: Konklusjon

Vi ser pa et kort sammendrag av kapittel 6, diskusjonen, og trekker en konklusjon.

12

2. Analyse av problemstillinger

| dette kapittelet tar vi for oss en grundig analyse av oppdragsgivers gnsker, og ser pa de ulike
teknologiene og mulighetene vi har til radighet for a Igse de relaterte problemstillingene.
Problemstillingene er generelt sett presentert i rekkefglgen vi mgtte pa dem, men merk at selve
konklusjonen og implementasjonen til en gitt problemstilling fgrst blir dekket i kapittel 3. Det er ogsa
en direkte sammenheng mellom kapittelnummereringen i kapittel 2 og kapittel 3.

2.1 Fly- og Lysdeteksjonssystemet

1 2013 ble det kjgrt et bachelorprosjekt ved Hpgskolen i @stfold, med oppgave a detektere og
analysere lysfenomenet som forekommer i Hessdalen. Oppgaven gikk ut pa a analysere bilder av
lysfenomenene som blir tatt av et kamera plassert ved den automatiske malestasjonen i Hessdalen.
For a kunne filtrere ut potensielle feilkilder med tanke pa forbipasserende fly, ble et gren-prosjekt
innfgrt i oppgaven. De satte opp en sensor som tok inn data fra forbipasserende fly, og deretter
logget disse til en database. Datamaskinen som bearbeider dataene og logger dem til databasen er
en dedikert maskin som er plassert pa oppdragsgivers kontor. Selve lysdeteksjonssystemet kjgrer
0gsa pa samme maskin.

Dette prosjektet kom aldri helt i mal. Systemet som ble satt opp er relativt ustabilt, og kunne ha veert
forbedret. Oppdragsgiver spesifiserte at det var gnskelig a fa dette systemet oppgradert, hvis vi fikk
mulighet til dette. Dette er beskreveti 2.1.1. Denne oppgaven ble ogsa oppf@rt som en egen
bacheloroppgave pa anbefaling av prosjektgruppen som satt opp dette systemet, da de var klar over
problemet. Denne oppgaven ble aldri tildelt en gruppe, slik at problemet var et faktum da vi begynte
med var oppgave. Vi matte tidlig bestemme oss for i hvor stor grad vi ville involvere oss i dette
arbeidet, da det ville fa store konsekvenser for vart eget prosjekt og hvor mye vi kunne forvente a fa
utrettet.

Da vi var helt avhengig av dette systemet i arbeidet med a bygge var egen Igsning, matte vi sette oss
tilstrekkelig inn i deres system, slik at vi var klar over hvordan det fungerte, og eventuelle feil og
mangler det matte ha.

2.1.1 Oppgradering av lys- og flydeteksjonssystem

Det ble tidlig klart at lys- og flydeteksjonssystemene ikke var optimale. Disse matte oppgraderes. Hvis
vi bestemte oss for a ta pa oss jobben a forbedre disse systemene, ville dette fgre til at vi matte
dedikere mye tid fra vart eget prosjekt for a sette oss grundig inn i deres system, samt & utforme de
ngdvendige Igsningene. Pa den annen side ville dette bety at vi hadde full kontroll pa hvordan
systemene arbeidet, og som en fglge av dette ville det bli betraktelig enklere a gjgre grensesnittet
mellom flydeteksjonssystemet og vart eget optimalt.

Et av problemene med den eksisterende Igsningen var en minnelekkasje i lysdeteksjonssystemet,
som fgrte til at vertsmaskinen sluttet a fungere. Dette fgrte til "hull" i dekningen, der informasjonen
ikke ble lagret til databasen.

13

Systemet var ogsa ganske utdatert, bade hardware- og software-messig, noe oppdragsgiver ogsa ville
forbedre dersom vi fikk tid. Hvis vi valgte a ta pa oss denne jobben ville det bety at vi hadde full
kontroll pa nar systemet gikk offline og liknende, slik at dette ikke fikk noen konsekvenser for vart
prosjekt.

2.2 Brukergrensesnittet

Oppdragsgivers gnske var at dataene fra databasen skulle presenteres pa en webside i form av
flyikoner pa et kart. Her skulle brukeren selv kunne velge hvordan dataene skulle fremstilles ved hjelp
av diverse verktgy og hjelpefunksjoner (som a begrense tidsintervallet for uthenting av data, hvor
mye data som ble vist frem pa en gang, og liknende). Dette medfgrte at vi matte ta stilling til en hel
rekke teknologiske valg, med formalet a gjgre brukeropplevelsen sa smidig og effektiv som mulig.

2.2.1 Valg av kartprogramvare
Oppdragsgiver gnsker et system liknende websiden FlightRadar24 (Flightradar24 AB, 2014) som vist i
Figur 2.1.

Figur 2.1: FlightRadar24

¢ c www.flightradar24.com

@ flightradar24

Her hadde vi mange muligheter for valg av kartprogramvare. Oppdragsgiver spesifiserer at det
eneste som trengtes av kartprogramvaren var en oversikt over selve Hessdalen, derfor hadde statiske
kart uten zooming og "panning" ikke vaert et problem. Likevel mente vi at det ville veere bedre a ha
disse verktgyene tilgjengelige hvis dette lot seg gjgre.

En mulighet vi hadde var a lage kartprogramvaren manuelt. Vi kunne altsa ha brukt et statisk kart-
bilde av Hessdalen og omegn, og spesifisert koordinatene for kartets plassering, slik at alle
flylokasjoner ble riktige i forhold til dette. Dette ville ha fgrt til at vi fikk full kontroll over alle aspekter
ved kartet, slik at vi ikke ville mgte pa situasjoner der en gitt kartprogramlgsning hadde ulgselige
mangler.

14

Likevel ville ogsa et slikt valg ha medfgrt enormt mye arbeid fra var side, ikke minst med tanke pa all
testing som matte ha blitt gjort. Hvis vi brukte en ferdig kartlgsning kunne vi vaere relativt trygge pa
at eventuelle feil ville bli rettet opp i fremtiden.

Nar det gjalder ferdige kartlgsninger finnes det flere leverandgrer: amCharts, Openlayers, arcGlIS,
Google Maps og mange flere. Bare dette lille utvalget av kartprogramvare har meget liknende
funksjonalitet, og det var klart tidlig at de fleste kartlgsninger ville innfri de fundamentale kravene for
vart produkt. Problemstillingen vi sto ovenfor var at det var nesten umulig a fa full oversikt over alle
krav vi potensielt kunne stille i fremtiden. Vi matte velge en kartlgsning der vi kunne forvente at det
meste allerede var dekket, selv om vi ikke hadde de spesifikke kravene klare fra starten av.

En stor faktor i beslutningen var populariteten til de forskjellige I@sningene. Dersom det fantes et
enormt antall brukere for et produkt, var det sannsynlig at alle tenkelige former for funksjonalitet
allerede var implementert, da andre sannsynligvis hadde stilt krav til dette tidligere. Samt at
systemet ville bli vedlikeholdt i fremtiden av leverandgren.

Noe av det viktigste for oss nar det gjaldt valget av kartprogramvare var at kartene var rikt pa detaljer
nar det ble zoomet inn pa smasteder, spesielt rundt Hessdalen. Vi hadde ogsa tenkt til 3 legge ut et
stort antall ikoner pa kartet, kanskje ogsa animere disse, derfor var det best hvis programvaren
gjorde slike operasjoner lett tilgjengelige og effektive.

Nar det gjaldt verktgy for manipulasjon av kartet for sluttbrukeren (zooming, panning, etc.), ville det
veere en fordel hvis dette allerede var inkludert i kartprogramvaren. At kartprogramvaren starter opp
og oppdaterer seg raskt var ogsa meget relevant.

Til sist var prisen for Igsningen en betydelig faktor. Open Source Igsninger var altsa a foretrekke.

2.2.2 Animasjon av fly

En potensielt sentral del av oppgaven var animasjon av fly, selv om dette ikke var en del av
oppdragsbeskrivelsen. Animasjon ville gjgre det lettere for sluttbrukeren a fa oversikt over et
hendelsesforlgp med store mengder data. Oppdragsgiver gjorde det klart tidlig i prosjektgangen at
dette var gnskelig, men ikke kritisk. Derfor ble prosjektet utarbeidet med dette som et aktuelt
tilskudd, etter at det grunnleggende var pa plass.

Nar det gjaldt mulighetene for animasjon av flyikonene, matte vi se pd om var valgte kartlgsning
hadde dette innebygd. Hvis dette ikke var tilfellet matte vi se pa hvordan vi kunne Igse det
"manuelt". Dette kunne potensielt bli en tidskrevende prosess, derfor hadde innebygget animasjon
veert a foretrekke, men dette kunne vi ikke regne med at var tilgjengelig i en gitt kartlgsning.
Alternativt kunne det veere en situasjon der de innebyggede mulighetene for animasjon ikke var
gunstige for vart bruksomrade. Det var altsa ikke utenkelig at vi matte implementere dette manuelt,
uansett tilfelle.

2.2.3 Hvordan vise frem data fra databasen

Relevante data for flyene skal vaere lett tilgjengelige. Vi hadde flere muligheter nar det gjaldt a vise
frem data for et gitt fly. Vi kunne for eksempel ha en "popup" pa flyikonet som viste disse dataene
nar brukeren spesifikt spurte om mer informasjon (ved a trykke pa et flyikon).

15

Det var ogsa mulig a gjgre det slik at all data alltid var tilgjengelig, slik at brukeren kunne se all
relevant informasjon umiddelbart. Dette ville vaert en meget bra Igsning hvis det var mulig a
presentere dette pa en oversiktlig mate. Problemet var at vi hadde store mengder data, som raskt
kunne bli overveldende for brukeren. Det skal ogsa nevnes at bruksomradet for Igsningen er 3
analysere flytrafikken i et spesifikt tidsrom, gjerne ogsa i et spesifikt geografisk omrade. Derfor var
det mer naturlig a la brukeren selv gjgre en "forespgrsel" om mer utdypende informasjon der dette
var relevant.

En annen mulighet vi ogsa hadde tilgjengelig var a vise frem deler av informasjonen ved hjelp av
smart bruk av ikonene. Man kunne for eksempel vise frem hvilken rotasjon flyet hadde pa et gitt
tidspunkt ved a faktisk rotere flyikonet pa kartet. Hgyden til flyet kunne representeres ved stgrrelsen
pa flyikonet, og sa videre. Hvis vi valgte a ga for en slik Igsning matte vi vaere forsiktige sa ikke dette
endte opp med a vaere rotete og uoversiktelig pa det endelige kartet.

Til sist ma det nevnes at arbeidsgivers gnsker selvsagt var kritiske nar det gjaldt presentasjonen av
data, da dette var en av de viktigste faktorene for brukbarheten til var Igsning.

2.2.4 Verktgy og hjelpefunksjoner

Nar det gjaldt uthenting og manipulering av websiden, matte vi gjgre det mulig for brukeren a hente
ut de dataene som var mest relevante pa en rask og effektiv mate. Her matte bruksomradet for vart
produkt tas med i betraktningen. Hvis et lysfenomen ble detektert i Hessdalen ville dette bli
registrert i en database sammen med et bilde av det faktiske fenomenet. Deretter var det sa tenkt at
sluttbrukeren av vart system skulle kunne ga inn og sammenlikne tidspunktet for lysfenomenet med
flytrafikken som forekom rundt denne tiden. Pa denne maten ville det veere mulig & se om det
aktuelle lysfenomenet var et fly eller ikke. Brukeren gar altsa inn i vart system og setter relevante
parametere for & begrense mengden data, som sa vises pa kartet.

Det er ogsa flere fly som ikke inneholder senderen som flydeteksjonssystemet bruker for & ta inn
data om flyet, altsa er det er helt usynlig for systemet. P& grunn av dette ville muligheten for a la
brukeren se sannsynligheten for fly veere av interesse. Spesielt i omrader (bade geografisk og
tidsmessig) der databasen ikke inneholdt data. Et slikt problem kan angripes pa flere ulike mater.
Hvis avanserte sannsynlighetsberegninger skulle utfgres, var det meget viktig a ta med i
betraktningen at dette ikke matte bli for krevende operasjoner for de systemene det eventuelt skulle
kjgre pa. Se 2.2.4.1.

Altsd matte vi veie kontroll brukeren skulle ha over datautvalget opp mot hvor brukervennlig
systemet ville bli som fglge av dette. Hvis brukeren hadde full kontroll over datauthentingen, ville
dette samtidig fgrt til at systemet ble tungvint 8 bruke. Alternativt ville for darlige verktgy og
valgmuligheter ha fgrt til at brukeren kanskje ikke hadde mulighet til & fa tak i den gnskede
informasjonen.

2.2.4.1 Sannsynlighet for fly

Et problem med systemer som logger flydata er at ikke alle fly inneholder senderen som slike
systemer baserer seg pa. Derfor vil visse fly ikke kunne registreres i slike systemer. Det kunne altsa
vaere nyttig a ha en oversikt over hvor stor sannsynlighet det var for at et fly hadde passert et
omrade, basert pa annen trafikk som er blitt registrert der.

16

Man kunne ha sett pa regelmessigheten av ruter. For eksempel kunne det hende at et gitt fly alltid
passerte Hessdalen ca. klokken 14.00 hver dag. Dette kunne sa blitt satt sammen for alle fly-ruter for
a gi en oversikt over flyene i omradet. Problemet med denne tilnaermingen var at fly som ikke var en
del av en standard rute aldri ville fa noe utslag, og da lysfenomenet kan dukke opp hvor som helst,
ville denne type analyse typisk ikke ha vaert spesielt nyttig.

En annen mulighet ville vaere 3 la brukeren spesifisere et punkt pa kartet, for sa a fa en indikasjon pa
trafikken der. Dette ville ha krevd relativt tunge regneoperasjoner pa store mengder data, og gitt et
resultat som i beste fall var noe upalitelig, i verste fall fullstendig unyttig. En annen vinkling av denne
problemstillingen var en sakalt "heatmap". Dette er et slags filter man legger over kartet som angir
intensiteten av (i vart tilfelle) flytrafikk. Ved hjelp av dette er det mulig for bruker a fa en generell
oversikt over hvor det er sannsynlig at fly har passert, basert pa andre fly i et relativt stort tidsrom.

2.3 Database og backend

Som nevnti 2.1, var databasen en kritisk faktor i vart arbeid. En stor del av oppgaven gikk ut pa a
sette oss inn i hvordan denne var definert, og deretter bygge var applikasjon basert pa kravene dette
stilte til grensesnittet mellom de to systemene.

Her ma det nevnes at databasen allerede hadde logget data for omtrent et halvt ar fgr var oppgave
begynte. Dette fgrte til at eventuelle problemer som kunne oppsta med dataene, matte Igses pa
andre mater enn a forandre pa databasens struktur. Vi matte heller bygge et robust system som talte
potensielle feil og mangler i disse dataene.

2.3.1 Relevante kolonner

Databasen inneholdt mange ulike typer data for en gitt flyobservasjon (altsa en "punkt-prgve" av
flyet, med dataene det hadde i Igpet av et gitt gyeblikk). Hver observasjon er relatert til et sett med
data. | databasen representeres dette som en rad med flere kolonner, slik vi ser i Tabell 2.1:
Databaselayout:

Tabell 2.1: Databaselayout

Hexident Postime Flightid Latpos Longpos Track Altitude Osv.
06A052 1370085739 | QTR991 61.48540 11.30859 295 32000
06A052 1370085774 | QTR991 61.51859 11.16329 295 32000
06A052 1370085796 | QTR991 61.53936 11.07198 295 31975

En rad bestar av flere datafelter, bare et mindre utvalg er tatt med i denne tabellen. Hexident er en
unik identifikator pa flyet, postime er tidspunktet da flyobservasjonen fant sted og flightid er et slags
rutenummer for flyet. De andre feltene gir data om flyets tilstand, slik som koodinater, rotasjon,
hgyde, osv. Disse blir dekket i stgrre detalj senere.

Til sammen vil sa flere slike rader forme en "flight/overflyvning", ett fly pa én tur i naerheten av
Hessdalen.

Her matte vi ta et valg angaende hvilke kolonner fra databasen vi skulle vise brukeren, og hvilke som
var ngdvendige for systemet selv.

17

Her matte vi vaere ngye slik at vi ikke tok bort data/kolonner som kunne vaere av interesse for
sluttbruker. Pa den annen side kunne det ogsa vaere problematisk hvis vi tok med kolonner som
virket forvirrende, eller som ga et feilaktig inntrykk.

2.3.2 Feil og mangler i data
Det kan oppsta situasjoner der noen av dataene i databasen er feil, eller rett og slett mangler.
Vi hadde flere forskjellige mater a takle slike situasjoner pa.

Vi kunne ga inn i databasen ved hjelp av SQL-spg@rringer og "rydde opp" ved a ta bort feilaktige eller
mangelfulle felter, eller korrigere data hvis disse var mangelfulle (ved hjelp av for eksempel
interpolasjon). Merk at denne type forandring ville krevd konstant opprettholdelse i ettertid, samt at
det ville tatt bort noe av kredibiliteten til dataene. Dataene kunne ha vaert manipulert, og beregnet
informasjon kunne ha avvik og mangler.

Vi kunne ogsa la databasen vaere slik den var, men prosessere dataene under uthenting, slik at vi
gjorde en aktiv filtrering og opprydding fgr dataene ble vist frem til sluttbruker. Pa denne maten ville
det ogsa veert mulig a informert bruker om data som hadde blitt behandlet fgr fremvisning, slik at
brukeren var klar over situasjonen.

En annen mulighet ville veert a gatt inn i flydeteksjonssystemet og korrigert mangelfulle data fgr de
ble lagret til databasen. Merk at i denne situasjonen matte vi ha reflektert eventuelle forandringer pa
de dataene som allerede var blitt logget til databasen fra fgr.

En siste mulighet var a ikke behandle slike feil, og heller varsle brukeren hvis dataverdier sa feilaktige
ut. Denne Igsningen kunne vaere ideell med tanke pa effektmalet for oppgaven (a fa klarhet i
lysfenomenet), da vi ikke hadde noen reell forutsetning for 8 bestemme hva som var "feil" eller ikke,
slik nevnti 1.4.1. Hvis et fly hadde rare verdier kunne nettopp dette vaere relatert til lysfenomenet. |
en slik situasjon ville bortfiltrering eller korrigering av slike "feil"-data veere katastrofalt.

Dataene i databasen kunne ogsa vaere mangelfulle eller overflgdige med tanke pa tettheten i data.
Relatert til dette var problemstillingen som oppsto hvis bruker valgte & hente ut for store mengder
data. Dette er beskreveti2.3.2.1.

2.3.2.1 Uthenting av for store mengder data

Selv om vi Igste problemer med datamengder i databasen kom vi likevel til et punkt der brukeren
hadde mulighet til & velge a hente ut s& mye data at grensene ble sprengt. Dette var uunngaelig da
data som ble aggregert over tid, der all data skulle vaere tilgjengelig for brukeren, i teorien hadde
uendelig stor mengde pa sikt. Derfor matte vi ta stilling til hva vi skulle gjgre hvis denne grensen ble
nadd.

En Igsning vi kunne ty til for a Igse dette problemet var a sette en fast gvre grense for hvor mye data
en bruker kunne hente ut. For eksempel en uke eller liknende. Men hvis vi gjorde dette ville vi
redusert fleksibiliteten til systemet vart kraftig, derfor gnsket vi a heller finne en annen Igsning.

En annen ting vi kunne ha gjort var a hente ut dataene i flere separate "pakker". For eksempel ved at
vi fgrst hentet ut 10 000 rader, deretter 10 000 rader til, osv. P4 denne maten ville det til enhver tid
veere plass til allokering pa webserveren, og det ble slutt-brukeren som matte ta hensyn til plass pa
sin egen maskin. Dette var rimelig, da brukeren selv valgte hvor mye data som skulle uthentes.

18

Uansett Igsning var det et faktum at vi matte gi brukeren tilbakemelding pa hvor mye data som ble
uthentet, og om brukeren ville ga videre med dette. Dette ble gjort ved a sette en grense pa 24
timer, hvis et stgrre utvalg enn dette ble utfgrt matte sa brukeren fa beskjed om at dette kunne vise
seg a vaere problematisk. Denne grensen la vi sa til i en konfigurasjonsfil, slik at denne kunne
forandres i ettertid hvis den viste seg problematisk.

Selv med dette ville uthentingen av store mengder data veere et faktum. Systemet kunne ikke uten
videre transportere store mengder data til sluttbrukerens maskin. Det var hovedsakelig webserveren
som ville fa problemer. Skulle vi teste oss frem, og sette en hardkodet grense for hvor mye som
kunne hentes ut? Problemet med denne fremgangsmaten var at denne grensen potensielt sett vil
kunne variere, samt at det ville begrense fleksibiliteten til systemet, slik nevnt tidligere. Slik
beskrevet i 3.4.3, sa fikk vi senere mulighet for a gke grensen pa hvor mye data som kunne allokeres
pa webserveren. Likevel var det ikke utenkelig at denne matte senkes igjen ved et senere tidspunkt,
derfor var det best hvis var Igsning pa dette var fleksibel.

2.3.3 Dataflyt
Vi hadde en database med alle data vi trengte. Disse dataene skulle presenteres pa en webside. For &
Igse dette hadde vi mange teknologier og metoder tilgjengelige i alle ledd av prosjektet.

For det fgrste matte brukeren ha et brukergrensesnitt i en nettleser, her var det ikke spesielt mange
alternativer a snakke om. Vi matte ha en webside med HTML (og CSS) som fundament. Utover dette
var det utallige muligheter. Dataene matte hentes ut fra en database og sendes til klientmasinen.
Formatet pa denne dataoverfgringen er diskuterti 2.3.3.1. Pa webserveren som tok seg av denne
uthentingen og videresendingen matte vi kjgre et skript som tok seg av databasetilkoplingen og
diverse dataprosesseringer. En utbredt Igsning pa dette er PHP, men det var ogsa flere andre
alternativer, dette er beskreveti 2.3.3.2.

2.3.3.1 Dataoverfgring, JSON vs. XML

Nar data skal overfgres fra en webserver til en klient-maskin er det flere mater dette kan skje pa.
Data kan overfgres ved at det skrives i et format vi selv bestemmer, som vi sa behandler pa klient-
maskinen. Dette er en liknende problemstilling til den visa i 2.2.1, der vi diskuterte mulighetene for a
bygge kartprogramvare selv, samt hvilke fordeler og ulemper dette hadde i forhold til & bruke en
ferdig utformet Igsning.

Det ville teoretisk sett veert mulig a la webserveren ta seg av all prosesseringen, og sa servere et
ferdig "kart-bilde" til brukermaskinen, noe som ville fgrt til tap av all direkte manipulasjon av kartet.
Det ville ogsa fgrt til at alle sma forandringer som brukeren gjorde ville krevd en ny runde med
uthenting og prosessering av data. Likevel hadde dette hatt den fordelen at brukermaskinen hadde
sluppet all arbeidsbyrde, og vart program kunne ha blitt brukt pa helt enkle enheter med et
minimum av prosesseringskraft. Vart produkt var imidlertid tiltenkt fullverdige datamaskiner som
ikke burde ha noe problem med arbeidsbyrden. Det skal ogsa nevnes at det potensielt kunne blitt
mye arbeid for webserveren hvis denne skulle bearbeide og presentere data for mange brukere
samtidig.

Den beste og mest utbredte Igsningen pa denne type problem er a overfgre alle relevante data til
brukeren, som sa tar disse i bruk og far arbeidsbyrden pa sin maskin. Denne overfgringen skjer sa i
form av et utbredt og velprgvd dataformat, der hovedsakelig to valgmuligheter finnes, XML og JSON.

19

Disse er relativt jevnverdige med tanke pa funksjonalitet, men forskjellen er at XML er betraktelig
mer fleksibel, da det brukes i mange flere sammenhenger enn bare overfgring av dataobjekter slik
som fly. Dette kommer pa bekostning av at det kreves en del ekstra "lim" i XML formatet for at alt
skal vaere sa tydelig som mulig. JSON pa den annen side er mer spesifisert for vart type bruksomrade,
og er saledes mer kompakt enn XML. Da vi har behov for a overfgre potensielt enorme mengder
data, er det selvsagt mer gunstig at det kan gjgres sa kompakt som mulig.

En kortfattet sammenlikning av de to formatene kan ses i Eksempel 2.1: Sammenlikning av XML og
JSON

Eksempel 2.1: Sammenlikning av XML og JSON

XML: 102 tegn uten whitespace
<document>

<by navn="0slo" befolkning="77591" />

<by navn="Fredrikstad" befolkning="77591" />
</document>

JSON: 88 tegn uten whitespace (14% reduksjon)

"byer": [
{

"navn": "Oslo",
"befolkning": 634463

}s
{

"navn": "Fredrikstad",
"befolkning": 77591

}
1
}
Vi ser tydelig av dette eksempelet at XML bruker betraktelig mer plass (i antall tegn), da "by" ma
spesifiseres for hver enkelt by-objekt, mens JSON sier at "her kommer en liste med byer", og deretter
listes alle by-objektene opp i rask rekkefglge. Merk ogsa at den prosentvise forskjellen i antall tegn vil
gke etterhvert som flere by-objekter legges til.

En annen problemstilling med XML er at det ogsa generelt sett tar lenger tid a prosessere, dette er
ogsa en kritisk faktor da vi vil at vart program skal veere sa responsivt og raskt som mulig. Det er ogsa
betraktelig enklere og raskere a behandle JSON formatet i JavaScript enn det er a arbeide med XML.

Til sist ma det nevnes at det eksisterer mange andre Igsninger pa denne type problem, slik som
kommaseparerte lister eller muligheter gjort tilgjengelige i HTML5. Det finnes for eksempel Igsninger
som er enda mer kompakte enn JSON. Vi valgte likevel & begrense oss til disse to, da det var disse vi
hadde hatt mest erfaring med tidligere. Vi var ogsa trygge pa at disse ville dekke alle behovene i vart
produkt.

2.3.3.2 Alternativer til PHP

Nar det gjelder skript som skal kjgre pa en webserver, er en av de mest utbredte matene a gjgre
dette pa PHP. PHP er et programmeringssprak som vi alle har hatt erfaring med tidligere, da det har
veert en sentral del av opplaeringen i programmering ved Hi@. Likevel er det ikke eneradende, det
finnes mange andre muligheter som dekker behovet vart. Eksempler pa disse er:

- ASP.NET

20

- Python (med Django-rammeverket)
- Ruby on Rails

- Java Server Pages (JSP)

- Node.js

Alle disse har fordeler og ulemper, men de er alle gyldige alternativer til PHP. Likevel var det tidlig
klart at PHP var det vi alle hadde hatt mest erfaring med. Derfor hadde vi den problemstillingen at vi
kunne ga for noe vi visste at ville fungere, og som alle hadde akseptabel erfaring med, men at det
senere kunne vise seg at andre Igsninger var bedre for vart bruksomrade. Kanskje var type
applikasjon hadde vaert mest gunstig a skrive i Python?

Problemstillingen var imidlertid at hvis vi skulle ga for en av disse andre Igsningene, matte vi fgrst ha
satt oss grundigere inn i denne Igsningen, og utviklingsprosessen kunne potensielt ha blitt utsatt
betraktelig.

2.3.4 Prosessering av data, server vs. klient

Vart sluttprodukt skal hente ut data fra en database og videresende dette til sluttbrukeren via en
webserver. Pa veien vil vi behandle dataene, blant annet ved a gjgre spesifikke utvalg, filtrere ut
kolonner, legge til nye kolonner, etc. Disse dataene kunne hovedsakelig bearbeides pa 3 ulike steder:

- |l databasen ved hjelp av SQL-spgrringer
- Pa webserveren som henter ut og videresender dataene
- Pa klientmaskinen, maskinen til slutt-brukerne til vart system

Da vi begynte pa oppgaven kjgrte databaseserveren og webserveren pa skolens server, frigg. Likevel
hadde vi mulighet for a flytte disse til andre maskiner hvis dette var gunstig for oss, dette detaljeres i
2.4. Likevel er prinsippene de samme for denne problemstillingen.

En databaseserver som for eksempel skal filtrere data gjgr dette ekstremt effektivt i forhold til det vi
kan fa til pa bade maskinen til sluttbrukeren og webserveren. Men ikke alt er mulig a gjgre pa en
gunstig mate med SQL. Derfor matte vi kanskje ty til mer "manuelle" Igsninger pa enten webserveren
eller klienten der vi ikke fikk Igst problemene med SQL. Her matte lasten som eventuelt ville oppsta
pa webserveren ved stor pagang tas med i betraktning.

Til slutt matte vi ogsa tenke pa at ikke alle data og muligheter var tilgjengelige i alle ledd i prosessen.
Pa databasen var det for eksempel problematisk & gruppere data pa en gunstig mate, slik at de ble
lettere & ta i bruk for webserveren og klientmaskinen (mer om dette i 2.3.6). Merk at dette er pa
grunn av darlig databaselayout, og ikke begrensninger i selve programvaren. Direkte forbindelse til
databasen fra klientsiden utelukkes naturligvis av sikkerhetshensyn.

2.3.5 Analyse av data

Databasen inneholder en mengde informasjon om flytrafikken rundt Hessdalen. Problemet vi sto
ovenfor var i hvor stor grad vi skulle ta pa oss oppgaven a analysere disse dataene. Her er det i
hovedsak snakk om to ulike typer analyse. For det fgrste vil analyse av flytrafikken for a fa en bedre
forstaelse av lysfenomenet vaere svaert relevant for effektmalet, dette er detaljerti 2.3.5.1. En annen
type analyse som ogsa er relevant er den som gir en bedre forstaelse for flytrafikken, og som gjgr
dataene i databasen lettere tilgjengelig. Dette er beskreveti 2.3.5.2.

21

2.3.5.1 Dataanalyse for effektmadlet, forstdelse av lysfenomenet

Formalet med oppgaven var, som nevnti 1.4.1, ikke bare & detektere flytrafikk, men ogsa potensielt
a bruke disse dataene for a bedre forsta lysfenomenet i seg selv. Det var ikke utenkelig at dataene
kunne gi oss et hint om hva dette lysfenomenet faktisk var. Derfor kunne en grundig analyse av disse
dataene vaere av interesse. For eksempel kunne det veere en direkte sammenheng mellom
lavtflyvende fly over Hessdalen og detekterte lysfenomener?

Problemet med denne type analyse var at det fgrst og fremst bygde pa antakelser. Det var vanskelig
a utarbeide funksjonalitet for generell analyse, og hvis man gnsket mer spesifikke typer analyse, var
det uendelig mange metoder/teorier man kunne ha kommet med, som sa matte implementeres. Pa
den annen side hadde vi en unik mulighet for a lage smarte Igsninger mens vi utarbeidet vart
produkt. | ettertid ville det vaert mer problematisk a implementere disse, uten fgrst a sette seg godt
inn i vart system, og deretter utvide dette. Derfor hadde det vaert gunstig hvis vi inkluderte relevante
analysemetoder mens vi arbeidet med oppgaven.

Vi matte altsa ta en avgjgrelse om hvilke typer analyse vi skulle inkludere i vart produkt, og hvilke vi
skulle overlate til manuell analyse, eller eventuelle utvidelser av systemet i fremtiden.

2.3.5.2 Dataanalyse for resultatmadlet, bedre oversikt over flytrafikken

Den andre typen analyse er den som gj@r at brukere av vart system lettere far den oversikten de
trenger. Her er det ogsa snakk om potensielt uendelige muligheter for analyse, men her er hensikten
med analysen mer spesifik, vi gnsker a gjgre data lettere tilgjengelig for brukeren.

Problemet med sa store datamengder som var oppgave tar for seg, er at det er vanskelig &
presentere disse dataene pa en mate som gir brukeren oversikt over det som er interessant i en gitt
situasjon.

Det er umulig for oss @ imgtekomme alle mulige problemstillinger som fremtidige brukere kan ville
Igse ved hjelp av vare data, men det er visse ting som vi kan gjgre mye lettere for brukere ved a
implementere relativt enkel funksjonalitet. For eksempel se pa trender i dataene, hyppighet av fly,
gjentagende fly-avganger og liknende.

En av de mest relevante formene for analyse i denne sammenhengen er noe som har blitt nevnt flere
ganger tidligere, sannsynligheten for fly i et omrade.

Flydeteksjonssystemet har den svakheten at fly som ikke inneholder den senderen som systemet
bruker for & hente inn relevante data vil vaere helt usynlige for flydeteksjonssystemet, og som fglge
vart system. Derfor hadde det veert gunstig for sluttbrukeren a hvertfall fa en generell oversikt over
sannsynligheten for fly i et gitt omrade. Selv om vart system viser at det ikke var flytrafikk i et omrade
pa det ngyaktige tidspunktet da et lysfenomen ble registrert, er det fortsatt fullt mulig at det var et
fly der, men det bare manglet den pakrevde senderen som flydeteksjonssystemet bruker. Dette kan
Igses pa flere mater.

En mulighet som hadde veert meget gunstig for oppdragsgiver og andre brukere av systemet, hadde
veert hvis brukeren kunne plassere ut en markgr, og deretter fatt opp en prosentvis sannsynlighet for
om det var et fly i dette omrade ved det angitte tidspunktet basert pa trender i flydataene. Dette ville
ha krevd relativt mye arbeid for a fa til, imidlertid, derfor matte vi forholde oss til hvor vanskelig

22

dette hadde vaert a implementere, hvor ngyaktig og effektivt dette hadde veert, samt hvilke andre
alternativer vi hadde.

Et direkte alternativ til dette som gir en mer generell oversikt, men som dekker et liknende behov, er
en sakalt "heatmap" (se 3.2.4.1, spesifikt Figur 3.5: Eksempel pa heatmap). Dette er et slags bilde
som baserer seg pa et sett med punkter plassert ut pa et kart. Plotter man all flytrafikk (eller hva som
helst annet) pa et kart, vil man umiddelbart se omrader med hgy trafikk. Det vil vaere stgrre
ansamlinger av fly i noen regioner enn i andre. En heatmap gir en generell oversikt over dette ved a
markere omrader pa kartet der intensiteten av objekter er stgrst med en farge, som sa blir "svakere"
jo mindre intensiteten blir. Ved hjelp av en heatmap kan man fa en estimert sannsynlighet for om det
finnes fly i et gitt omrade.

Forskjellen pa a sette ut en markgr slik nevnt over, og det a generere en heatmap, er at heatmap-en
er sa generell at den potensielt kan bli ubrukelig for a finne sannsynligheten for fly. Dette er blant
annet fordi en heatmap gjerne vil ta med flydata for et stort tidsintervall, for eksempel all flytrafikk
for en maned. Dette kan Igses ved at dataene som brukes til heatmap-en kan spesifiseres neermere
av brukeren. For eksempel kunne man bruke all data for en maned, men bare for data mellom
klokken 17.00 og 18.00 pa spndager. Dette ville imidlertid tatt betraktelig lenger tid & implementere,
da vi matte ha tatt hensyn til alle potensielle gnsker en bruker kunne ha anngaende heatmap-en.

Til sist ma det ogsa nevnes at denne type analyse vil kreve store mengder data, problemstillingen var
sa hvor analysen skulle finne sted, og hvordan den skulle forega slik at dette ble gjort mest mulig
effektivt. Selve heatmap kunne ha blitt generert bade pa webserveren og pa klientmaskinen.

Den mest "gkonomiske" maten a generere heatmaps p3, ville vaere a gjgre dette pa forhand og ha
mellomlagrede kart klare. Dette hadde vaert meget kostnadseffektivt, da all prosessering kunne skje
pa forhand, slik at ingen deler av systemet fikk noen signifikant arbeidsbyrde. Dette hadde imidlertid
den svakheten at brukeren ikke lenger kunne spesifisere detaljer rundt hvordan heatmap-en ble
generert. Tapet av fleksibilitet ville antakelig gjort funksjonen relativt unyttig, da det ville vaert lang
ventetid (opp til en maned/uke avhengig av konfigurasjon) og umulig a fa heatmaps for noe annet
enn hele maneder.

En annen problemstilling var ogsa at det hele tiden blir lagret mer data av flydeteksjonssystemet.
Derfor matte en prosess kjgres regelmessig, som regnet ut heatmaps for den nye flytrafikken.

2.3.6 Gruppering av fly i en overflyvning

Behovet for a gruppere fly rundt en overflyvning ble umiddelbart klart for oss da tynning av fly i en
overflyvning, og behandling av overflyvninger som enheter (spesielt pa kartet) ble ngdvendige. Hvilke
muligheter vi hadde for dette er beskrevet i delkapitlene under.

For a spesifisere ngyaktig hvilken type gruppering det er snakk om, s3 mener vi altsa at et fly som flyr
i naerheten av Hessdalen vil etterlate seg flere "punkter" i databasen. Alle disse tilhgrer en logisk
gruppe, en "overflyvning". Hvis dette flyet kommer tilbake senere vil dette representere en ny
overflyvning som danner sin egen gruppe. Malet er sa a bruke dataene og finne en mate a gruppere
disse p3, slik at en overflyvning kan behandles som ett objekt. Dette er ngdvendig av flere grunner,
hovedsakelig for & kunne tynne ut databasen, samt for a kunne behandle grupper nar stier (paths)
skal tegnes opp pa kartet, osv (se 3.2.4.4).

23

Grupperinger basert pa de eksisterende kolonnene er beskrevet i delkapitlene under, men det var
ogsa andre fremgangsmater vi kunne ha gatt for, disse skal vi fgrst gi en oversikt over.

Problemet med gruppering oppsto hovedsakelig fordi dataene produsert av flydeteksjonssystemet er
separate punkter for en vilkarlig overflyvning, uten noen direkte definerende kolonne som
identifiserer en overflyvning. Slik beskrevet under var likevel dette mulig ved a bruke en kombinasjon
av kolonner, men denne problemstillingen kunne vaert helt avverget hvis flydeteksjonssystemet ble
modifisert.

Flydeteksjonssystemet tar inn data for en overflyvning, og er til alle tider klar over hvilket fly det har
kontakt med, derfor hadde det vaert mulig for systemet 8 generere en separat kolonne (i form av et

Igpetall) som skilte pa overflyvninger. Ved hjelp av dette ville det vaert enkelt & gruppere alle fly som
hadde det samme Igpetallet i en overflyvning.

En annen mulighet ville vaert a strukturert databasen pa en slik mate at flere tabeller ble tatt i bruk.
En tabell kunne inneholdt overflyvninger, og en annen kunne sa inneholdt punktene som oppgjorde
denne overflyvningen, og som sa refererte til hvilken overflyvning de tilhgrte. Dette ville krevd en
identifiserende kolonne slik nevnt i forrige paragraf.

Slik nevnti 2.3.6.3 er Regtime en meget relevant kolonne med tanke pa gruppering, men det har den
svakheten at det potensielt kan oppsta sma variasjoner under lagring, som gj@r at en overflyvning
kan fa opp til flere ulike regtime verdier. Dette kunne vaert Igst ved at denne kolonnen ikke ble
bestemt av databasefunksjonen, NOW(), men isteden valgte det ndvaerende tidspunktet i
flydeteksjonssystemet. Denne verdien kunne sa bli satt for alle punkter til overflyvningen. Da ville
det veert garantert at denne alltid var lik for alle punkter i en overflyvning.

Alle disse metodene hadde imidlertid en stor svakhet, det krevde at vi utfgrte fundamentale
forandringer i flydeteksjonssystemet, som sa matte bli reflektert for alle data allerede logget til
databasen. Dette ville veert umulig for de to fgrste metodene, da dette ville krevd at data ble
gruppert slik at de kunne tildeles en felles identifikator. Altsad en gruppering for & oppna gruppering.

2.3.6.1 Gruppering ved hjelp av hexident og postime

Den fgrste og mest apenbare Igsningen var a se pa en gitt hexident (en unik identifikator for et gitt
fly, som kunne veere lik for flere ulike overflyvninger), og dermed se pa tidspunktene for denne
hexidenten. For a forklare dette tar vi for oss et eksempel der en hexident ble registrert i databasen
ved fglgende tidspunkter:

. mars 2014 klokken 14:43
. mars 2014 klokken 14:45
. mars 2014 klokken 14.50
. mars 2014 klokken 9.45
. mars 2014 klokken 9.46

[}
N N W oww

Vi ser at det er logisk a gruppere disse slik at de 3 fgrste punktene inneholder en overflyvning,
deretter kommer de neste 2 punktene flere dager etter, slik at disse blir gruppert i sin egen
overflyvning. Desverre er det en stor problemstilling med denne fremgangsmaten. Hvordan skal man
sette grensene for om et fly tilhgrer samme overflyvning eller ikke? Vi ser pa et nytt eksempel:

24

e 5. januar 2014 klokken 19:11
e 5. januar 2014 klokken 19:17
e 5. januar 2014 klokken 19.18
e 5. januar 2014 klokken 19.20

Spgrsmalet er om dette er en overflyvning. Det er det vanskelig a vite. Kanskje mellomrommet pa ca.
5 minutter fra det fgrste punktet og til de 3 andre faktisk betyr at flyet na har begynt pa en ny
overflyvning? Til 3 begynne med, tenkte vi pa det slik at hvis punktene var sa naer hverandre, sa
behandlet vi det likevel bare som en overflyvning, da dette var logisk. Dette ville imidlertid ha fgrt til
problemet hvis flyet byttet FlightID mens dette skjedde. Tynningen av data ville ogsa bli ujevn hvis to
overflyvninger ble slatt sammen, og deretter tynnet ut.

2.3.6.2 Gruppering ved hjelp av FlightID

FlightID fungerer som et slags rutenummer for et fly. Der Hexident er en unik identifikator pa et fly,
som kunne ga igjen for flere overflyvninger, sa ville Flightid vaere unik og konstant for en
overflyvning. Derfor ble det raskt klart at dette potensielt kunne brukes for a gruppere fly.

2.3.6.3 Gruppering ved hjelp av hexident og regtime
En annen mulighet for gruppering var a se pa datafeltene hexident og regtime.

Forst ma det forklares at vart syn pa "regtime"-kolonnen i databasen var at dette var klokkeslettet
data ble lagret til databasen, altsa noe i neerheten av "postime" (tidspunktet som flyet sendte ut en
melding om dens ndvaerende status). Det viste seg imidlertid at utover a vaere klokkeslettet som data
ble lagret til databasen, sa ble ogsa all data for en gitt overflyvning lagret SAMTIDIG.

Systemet tok inn informasjon fra passerende fly kontinuerlig, og aggregerte det mens flyet var i
luften. Etter at flyet hadde forlatt rekkevidden til sensoren ble sa all data lagret til databasen
samtidig. Dette betydde at regtime ville veere lik for alle data i en overflyvning. Altsa kunne vi
tilsynelatende bruke regtime for a ngyaktig kunne gruppere data. Hexident ble brukt hvis to ulike fly
ble registrert med samme regtime (de flgy ut av rekkevidden til sensoren samtidig).

2.4 Plassering og drifting av systemer

Vi hadde hovedsakelig tre ulike systemer & forholde oss til. Hvor disse skulle hostes (plasseres og
driftes) var viktig for stabiliteten til vart system, og hvordan det ville tale & kjgre konstant i flere ar
fremover.

2.4.1 Database

Vi vurderte kort om vi skulle la databasen vaere hostet pa skolens server Frigg, slik den var da
oppgaven var begynte, eller om det var mer gunstig a flytte den et annet sted pa grunn av annen
trafikk pa Frigg.

2.4.2 Flydeteksjonssystem

Slik nevnt i 2.1 sa kjgrte flydeteksjonssystemet (sammen med lysdeteksjonssystemet) pa en dedikert
datamaskin pa oppdragsgivers kontor. Denne Igsningen var ikke helt optimal, spesielt med tanke pa
at denne maskinen fikk lite tilsyn. Derfor var det viktig a utforske eventuelle alternativer til dette.

25

Det var flere ting som matte tas hensyn til nar det gjaldt plasseringen av dette systemet, men
hovedsakelig var det ustabiliteten til systemet som var den stgrste faktoren. Et slikt system krever
regelmessig tilsyn for & vaere sikker pa at det fungerer som det skal, men det er fa som vil ta pa seg
en slik oppgave. Derfor kunne det blant anne bli vanskelig a fa dette driftet pa skolens servere.

2.4.3 Webserver

Nar det gjaldt webserveren var den stgrste faktoren hvor mye minne som kunne allokeres pa
webserveren pa en gang. Problemet var at store mengder data skulle overfgres til sluttbrukeren, og
dermed kunne grensene raskt sprenges. En stor del av prosesseringen gikk ogsa pa webserveren,
derfor var det viktig a forsikre oss om at serveren som hostet denne hadde tilstrekkelig med
ressurser for a utfgre alle prosesseringer for flere samtidige klienter.

En annen problemstilling var at lysfenomenet i Hessdalen var, og er, av internasjonal interesse.
Derfor kunne vart system potensielt fa perioder med stor pagang. Altsa mate systemet ha en sa stor
grad av tilsyn og vedlikehold at dette ikke ville fgre til problemer.

Webserveren er, i likhet med databasen, hostet pa Frigg. Denne brukes i en rekke forskjellige
sammenhenger, men vi har liten kontroll over den. Hvis det skulle oppsta problemer med at serveren
ikke kunne allokere nok minne til programmet vart, kunne dette bli vanskelig a Igse.

Vi var altsa i en situasjon der webserveren var ideell a drifte pa frigg sa lenge vi ikke nadde noen
grenser. Derfor matte vi utforme var applikasjon med dette i tankene hvis vi bestemte oss for a
plassere webserveren der.

2.5 Arbeidsmetode

Vart prosjekt hadde som mal a produsere en webside som inneholdt mye funksjonalitet, og som til
tider behandlet relativt store datamengder. Programmering var en stor del av prosjektet, og dette
matte det tas hensyn til med tanke pa var arbeidsmetode.

2.5.1 Versjonshandtering

En av de stgrste problemstillingene vi sto overfor med prosjektet var hvordan vi skulle handtere
backup og administrering av programkoden vi skrev, eller med andre ord versjonshdndtering. |déen
bak versjonshandtering er at brukere skal kunne gjgre forandringer, og deretter "committe" disse
(altsa en navngitt forandring som legges inn i systemet). Slik at det er lett & holde oversikt over
forandringer, og hva hver enkelt forandring innebaerer. Dette inneholder ogsa muligheten for a ga
tilbake til en tidligere commit, altsa a tilbakestille endringer hvis noe skulle veere feil. Alle disse
forandringene samles i et sakalt "repository" (en sentral lagringsplass som holder oversikt over alle
forandringer, samt ndvaerende versjon av dokumentet, etc.).

Til prosjektet ble vi tildelt en brukerkonto pa "Trac", som kunne brukes for a kommunisere med
prosjektveileder, dokumentere prosjektet og holde oversikt over Issues. Trac inneholdt ogsa et
versjonshandteringssystem, SVN. Dette var altsa en mulighet for versjonshandtering.

SVN er bygget pa en slik mate at alt er sentralisert i et repository, eller en "ekte" sentral lagringsplass
om du vil. Altsa vil forandringer som vi gjgr pa prosjektet, nar de committes, automatisk appliseres til
det sentrale repository-et, for alle brukere. Dette kunne vaere problematisk, da det kanskje viste seg i

26

ettertid at en feil hadde forekommet, som sa ville fgre til at dette matte tilbakestilles. Det var bedre
hvis hvert enkelt gruppemedlem hadde sitt eget lokale repository, og deretter opplaste dette til det
sentrale reposity nar alt var klart. Hver bruker kunne sa velge nar sykronisering med dette hoved-
repositoriet skulle skje.

En Igsning foreslatt av prosjektveileder var Git (GitHub, 2014), men dette hadde den
problemstillingen at det var betraktelig mer komplisert og problematisk i bruk i forhold til hva vi
krevde til vart bruksomrade. Da vi bare var tre som jobbet sammen, samt at vi unngikk a dele opp
programmeringsarbeidet sa langt dette lot seg gjgre (beskrevet i 2.5.2), sa var denne type l@gsning
relativt omfattende i forhold til vare behov.

Versjonshandtering gj@r at backup og reversering av forandringer alltid er lett tilgjengelig. Dette gjgr
ogsa at alle involverte alltid har oversikt over hvilke forandringer som skjer i et prosjekt. Spgrsmalet
var sa hvilket versjonshandteringssystem som var mest gunstig for var arbeidssituasjon.

2.5.2 Delegering av arbeidsoppgaver

Sluttproduktet i vart prosjekt var ett sammenhengende system som omhandlet en enkelt webside.
Dette fgrte til at en enhet i systemet til enhver tid var avhengig av alle andre enheter. Hvis for
eksempel en forandring ble gjort pa webserveren, ville dette mest sannsynlig fa direkte fglger for
selve websiden ogsa. Denne type Igsning gjorde det problematisk a delegere ut stgrre
arbeidsoppgaver til ulike gruppemedlemmer, da disse delene til enhver tid matte holdes samstemte.
Sma misforstaelser kunne bety store utsettelser.

Vi matte altsa ta en avgjgrelse pa hvordan vi hadde tenkt til 3 arbeide, slik at vi kunne jobbe sa
effektivt som mulig gjennom hele prosjektperioden.

Den fgrste muligheten var a prgve a dele opp programmeringsjobber til hver enkelt, og "sy" dette
sammen etterhvert som ulike deler ble ferdig. Problemet var at misforstaelser kunne fgre til store
utsettelser. En annen problemstilling var a teste systemet for feil, da det ofte var vanskelig a vite hvor
eventuelle feil ligger for alle deler settes sammen, szerlig dersom ingen har en komplett oversikt.
Dette ville imidlertid bety rask fremgang i prosjektet, da utviklingen kunne forega parallelt.

Vi kunne ogsa arbeide hver for oss med ulike arbeidsoppgaver, men dette har den problemstillingen
at enkeltmedlemmer kan miste helhetsperspektivet i Igpet av arbeidet. Et annet problem er at det til
tider kan veere vanskelig & dele opp arbeidet slik at alle har noe a gjgre.

Pa den annen side, ville konstant gruppearbeid fgrt til mye bortkastet tid for andre
gruppemedlemmer, da det ikke var utenkelig at man til tider matte vente pa at en Igsning skulle
implementeres. Dette har imidlertid den positive effekten at alle gruppemedlemmer alltid har
oversikt over hele prosjektgangen, og problemer kan raskt Igses da alle er samlet nar de oppstar.

2.5.3 Loggfaring av arbeid

Arbeidet foregikk fortlgpende med programmering av produktet, rapportskriving og mgter med
oppdragsgiver og veileder. | Igpet av denne tiden matte vi ha en klart definert metode for a loggfgre
alle viktige hendelser slik at vi hadde dette tilgjengelig nar vi skulle ta dette med i rapporten senere.
Derfor var det viktig a tidlig finne en en mate a raskt og effektivt loggfgre arbeid. Her var det uendelig
mange mater a ga frem pa, men i prinsippet var det likegyldig hvordan vi gikk frem, bare vi fikk med
all relevant informasjon.

27

Det ma ogsa nevnes at vi selvsagt holdt regelmessige mgter med tilhgrende mgtereferater, men det
var hovedsakelig hendelsene utenfor disse som var problematiske a finne gode mater a loggfgre.

En av de viktigste formene for loggf@ring i denne type prosjekt var issue tracking, altsa en oversikt
oversikt over arbeidsoppgaver som matte utfgres i programkoden, og resultatet av disse.

2.5.3.1 Issue tracking

Issuetracking er rett og slett en mate a holde oversikt over hva om skal implementeres i koden, og

resultatet av slike forandringer. For eksempel kunne et gruppemedlem lage et issue for a gjgre det
mulig a gi en beskjed til brukeren nar store datamengder hentes ut. Dette kunne sa implementeres
og merkes som "lgst".

Det var mange ulike Igsninger for issue tracking. Vi kunne blant annet bruke Igsningen innebygd i
Trac, eller alternativt en liknende Igsning innebygget i Bitbucket (nettstedet for prosjektstyring som
hoster Mercurial, var Igsning pa versjonering, se 3.5.1). Den stgrste problemstillingen vi matte tenke
pa var hvor brukervennlig Igsningen var, og hvor lett det var a eksportere Igsningen naer slutten av
prosjektet, hvis dette eventuelt skulle inkluderes i hovedrapporten.

2.5.4 Programmeringsfilosofi

Det er hovedsakelig to hovedparadigmer a forholde seg til nar det gjelder programmeringsfilosofier.
Det er om koden skal utarbeides etter fossefall-prinsippet eller om den skal utarbeides iterativt.
Fossefall-prinsippet vil si at hvert "niva" av prosessen utarbeides for a vaere basis for det neste. Man
gar aldri tilbake til et tidligere niva da hvert niva utarbeides for a vaere endelig. For eksempel vil dette

si at testing av systemet foregar i ett niva, etter at systemet er fullt utarbeidet.

Alternativet er 3 arbeide utifra en iterativ prosess, der man ofte gar tilbake og forandrer pa
funksjoner og metoder som allerede er ferdigstilt, hvis dette er gunstig for helhetslgsningen. Det vil si
atilgpet av prosessen vil det alltid vaere rom for a ga tilbake og omarbeide deler av systemet, selv
om det kan medfgre at andre deler ogsa ma tilpasses dette.

| tillegg til dette er ogsa generelle "kjgreregler" for programmering kjekt a fa definert tidlig, hvis ulike
medlemmer skal arbeide pa det samme systemet. Det er imidlertid viktig at disse ikke blir for
begrensende, da dette kan kjgre selve kodearbeidet vanskeligere enn hva som er hensiktsmessig.

28

3. Planlegging og utforming

| kapittel 2 presenterte vi en oversikt over problemstillinger som er relevant i var oppgave. | dette
kapittelet skal vi ta for oss de Igsningene vi valgte og hvorfor, samt hvordan vi implementerer disse.
Dette skaper sa fundamentet for det fulle systemet vi skal levere, som blir beskrevet i sin helhet i
kapittel 4. Merk at det er en direkte sammenheng mellom nummereringen av delkapitler i kapittel 2
og 3.

3.1 Fly- og Lysdeteksjonssystemet

Var oppgave var a utarbeide en webside som presenterer dataene fra databasen satt opp av den
tidligere prosjektgruppen. Likevel ble det spesifisert av oppdragsgiver at vi burde se naermere pa
deres Igsning, og forbedre systemet hvis vi sa muligheter for dette. Vart prosjekt bygget direkte pa
deres system, derfor var det helt kritisk at dette fungerte tilfredsstillende.

Slik nevnt i 2.1 var selve flydeteksjonen bare en liten del av deres system, og dette produserte data
som ble lagret i en database driftet pa skolens egen server. Sa lenge det var data i databasen, kunne
vi utarbeide vart produkt, og dette ville ha fungert (kanskje med litt rare resultater) uansett hva som
hendte med fly- og lysdeteksjonssystemene.

Diverse problemer med lys- og flydeteksjonssystemene gjorde at disse matte oppgraderes, dette er
detaljerti 3.1.1. Med dette som utgangspunkt bestemte vi oss for a ikke involvere oss i dette
systemet annet enn de dataene som |3 i databasen. Vi kunne sa konsentrere oss om a utarbeide vart
eget produkt fgrst og fremst, og hvis det skulle bli tid mot slutten av prosjektet kunne vi heller ta for
oss dette systemet da.

Merk at dette var med forbehold om at databasen de hadde satt opp var tilfresstillende for
behovene til vart prosjekt. Eventuelle problemer som oppsto med deres system Igste vi sa heller ved
a ta kontakt med den tidligere prosjektgruppen direkte, istedenfor a prgve a Igse det selv. Pa denne
maten fikk vi konsentrert oss om vart prosjekt i fgrste rekke, uten i tillegg a3 matte bruke tid pa a
sette oss inn i deres system. Det ville imidlertid vise seg at forandringer matte gjgres i deres system
for at vi skulle kunne gjgre var jobb, dette er beskreveti 3.1.2.

3.1.1 Oppgradering av lys- og flydeteksjonssystem

Systemet viste seg & vaere relativt ustabilt pd grunn av flere faktorer. Blant annet hadde systemet et
problem med en minnelekasje. Det var ogsa ngdvendig med generell oppdatering av programvaren
pa maskinen. Vi besluttet oss imidlertid tidlig i prosjektet for a ikke ta pa oss denne jobben, da vi
prioriterte arbeid pa vart eget system. Disse problemstillingene ble senere Igst av den tidligere
prosjektgruppen, som tok pa seg jobben med a oppdatere og forbedre systemene. De utfgrte dette
parallelt med, men uavhengig av, vart prosjekt.

Selv etter disse forandringene var systemet fortsatt relativt ustabilt. Dette var noe vi matte ta hensyn
til i arbeidet fremover.

29

For det f@rste kjgrte hovedsakelig programmene pa en Linux-maskin, men det viste seg ngdvendig
med en proprietzer lgsning som tolket meldingene sendt ut fra passerende fly. Uten dette var det
umulig a8 dekode meldingene. Dette var et Windows-program, og derfor ble Windows satt opp pa en
virtuell maskin pa Linux-maskinen. En svikt i et av leddene kunne fgre til at hele systemet sluttet a
fungere. Dette blir beskrevet naermere i kapittel 4.

Med alle disse usikkerhetsmomentene tatt med i betraktning, konkluderte vi med at selv om
systemet ble forbedret, sa kunne vi ikke ngdvendigvis stole pa at det ville kjgre stabilti arene
fremover. Dermed tok vi forbehold om dette mens vi utarbeidet var Igsning, slik at eventuelle feil
som kunne forekomme ikke ville fa konsekvenser for vart system.

3.1.2 Samplingsfrekvens og datamengde

Et kritisk problem vi mgtte pa kort tid etter at vi begynte a hente ut data og kj@re tester pa vart
system, var at samplingsfrekvensen til systemet var alt for stor. Det ble registrert mer data enn
ngdvendig for a representere en overflyvning. Flere steder var det over hundre punkter per
overflyvning. Dette var alt for mye data, spesielt med tanke pa at de fleste flyene bare beveget seg i
rette linjer, med liten variasjon i dataverdiene. Problemet er illustrert i Figur 3.1 og Figur 3.2, som
viser en tidlig utgave av systemet der hver observasjon har et eget flyikon.

Figur 3.1: Datamengde

Stjordal

Hudiksvall

Bergen
o

Fana

Norrtal
sandvika= O Oslo Upposala

O, steras
rarsihen Vasterds

Haugesund Karlstad Taby

Figur 3.2: Punktdensitet

SAS4419

Time: 1370084666

¥
¥

30

Maten vi valgte 3 Igse problemet pa var a gjgre forandringer i flydeteksjonssystemet, slik at dette
begrenset hvor mange punkter som kunne bli registrert for et forbipasserende fly. Denne grensen
satt vi til 25 (der vi tidligere hadde over 100 punkter for de fleste overflyvninger). Dette var den
minste mulige grensen som systemet tillot uten @ matte skrives helt om. Denne forandringen matte
ogsa reflekteres i de dataene som allerede hadde blitt logget til databasen, dette er dekket i 3.3.2.3.

Denne forandringen ble utarbeidet i samarbeid med den tidligere prosjektgruppen, da vi hadde valgt
a ikke sette oss inn i deres system i st@rre grad, slik nevnt tidligere. Forandringen er beskrevet i stgrre
detalj i kapittel 4.

Vi gnsket altsa a oppna en effekt som likner den representert i Figur 3.3, altsa en jevn uttynning slik
at vi star igjen med et mer gunstig antall punkter. Slik vi ser pa den andre figuren er det fortsatt fullt
mulig 3 se flyets bane. Merk at figuren ikke er basert pa faktiske data, og svingningen er noe
overdrevet.

Figur 3.3: Forbedret utvalg av punkter

Merk at selv om databasen ble tynnet ut til 8 ha maksimalt 25 punkter, la vi i tillegg til funksjonalitet i
vart program som gjorde et enda tynner utvalg. Vi satt grensen til 10 punkter for hver overflyvning.
Dette ga et tilstrekkelig bra bilde av overflyningen. Denne grensen var sa tilgjengelig i
konfigurasjonsfilen, slik at dette kunne justeres i ettertid (opp til 25 punkter).

Merk at alle (maks) 25 punkter likevel matte overfgres til webserveren. Deretter ble de tynnet ut og
sendt videre til klientmaskinen.

3.2 Brukergrensesnittet

Brukergrensesnittet er den mest kritiske komponenten i vart system. Dette matte vaere utformet pa
en mate som ga brukeren best mulige verktgy og funksjoner for & kunne analysere flydataene sa
effektivt som mulig. Etter flere samtaler med arbeidsgiver for a fa klarhet i hva som ble gnsket av
systemet, samt hvilke metoder vi ansa som mest gunstige for a produsere disse kravene, kom vi frem
til en midlertidig skisse tidlig i prosjektet. Denne ga en oversikt over var arbeidsplan som vi kom til 3
felge gjennom hele prosjektet, se Figur 3.4: Skisse av grensesnitt

31

Figur 3.4: Skisse av grensesnitt

Selection
Menu
Timeline | Butions
Timeline
EE details
0 HMuripis 1 PIN
1 1
Start End n‘xspeé?I /\ A
]

i

Stier Heatmap

Figuren gir en oversikt over generel layout og alle funksjoner vi gnsket inkludert i det ferdige
produktet, detaljene om de ulike elementene er beskrevet i de pafglgende underkapitlene og
kapittel 4, men fgrst gir vi en kort oversikt:

Alt begynner med at brukeren velger et tidsrom ved hjelp av verktgyet gverst til venstre (ikke
detaljert pa denne figuren). Data hentes ut for det aktuelle tidsrommet og vise dette pa kartet. Dette
tidsrommet vil definere grensene for tidslinjen, vist nederst til venstre. Her kan brukeren velge ut et
spesifikt "gyeblikk" i tid, som blir representert ved hjelp av ikoner pa kartet.

Kartet inneholder hovedsakelig to ulike ikoner. Den fgrste type ikon er datapunktene fra databasen,
altsa alle punktene som til sammen oppgjsr en "overflyvning". Et fly pa vei over Hessdalen ved et gitt
tidspunkt. Disse kan skrus av eller pa ved hjelp av knappen "Stier", som viser disse nodene samt en
linje som knytter disse sammen.

Den andre type ikon er ikonet som representerer "gyeblikket" valgt av brukeren pa tidslinjen. Dette
vil altsa plasseres pa kartet pa det stedet flyet befant seg ved dette tidspunktet, og data assosiert
med ikonet vil ogsa beskrive dette gyeblikksbildet av flyet.

Disse funksjonene vil gi brukeren mulighet for a se data for et gnsket tidsrom, samt oversikt over et
spesifikt tidspunkt ved hjelp av tidslinjen. Dette er den grunnleggende funksjonaliteten brukeren
trenger for a ta i bruk vart system. De andre funksjonene, samt en mer detaljert beskrivelse av de
funksjonene vi allerede har nevn her, finner du i delkapitlene under.

32

3.2.1 Valgav kartprogramvare

Etter a ha sammenliknet de ulike kartlgsningene, kom vi frem til at Google Maps var det beste valget,
hovedsakelig fordi Google Maps er utbredt og har mange brukere. En annen bonus er at Google
Maps er godt dokumentert.

Google Maps hadde all funksjonalitet vi trengte. Det var enkelt a plassere og manipulere ikoner,
kartet var detaljert nok for vart behov (og merkbart bedre enn flere av konkurrentene), samt at
zooming, panning og valg mellom satellitt- og kartbilder alle var inkludert direkte i kartet automatisk.

Det er selvfglgelig ogsa en fordel at Google Maps er helt gratis.

3.2.2 Animasjon av fly

Animasjon var noe vi gjerne gnsket a fa til. Dette ville gi brukeren en enkel oversikt over et
hendelsesforlgp med mange fly. Det viste seg imidlertid at oppdragsgiver ikke sa pa dette som viktig
for sluttproduktet. Dermed valgte vi a ikke implementere dette, for heller a prioritere andre aspekter
ved prosjektet.

3.2.3 Hvordan vise frem data fra databasen

Vi valgte a presentere flydataene hovedsakelig ved hjelp av popup-bobler/informasjonsvinduer. Disse
dukker opp nar man trykker pa et flyikon eller en av nodene for overflyvningen (altsa en
flyobservasjon fra databasen). Dette var oppdragsgivers gnske etter a ha blitt presentert de ulike
mulighetene.

Google Maps gjorde dette meget enkelt a legge inn, samt at informasjonsvinduer for flere fly uten
problem kunne vare oppe samtidig. De ville ogsa fglge flyikonene de tilhgrte hvis disse ble flyttet pa.

Viintroduserte en ny problemstilling nar vi valgte a gjgre det pa denne maten. Hvordan skulle
brukeren fa pavirke apning og lukking av flere slike informasjonsvinduer, og hvilke verktgy vi skulle
tilby for a gjgre dette lettvint? Dette er beskreveti 3.2.4.3.

I tillegg til informasjonsvinduer valgte vi ogsa a representere data om rotasjon direkte ved a rotere
flyikonene pa kartet. Posisjonen til flyene ble selvsagt representert ved plassering pa kartet, og det
valgte tidspunktet pa tidslinjen ble tydelig fremstilt.

Tidslinjen oppgir altsa tidspunktet da flyet meddelte sin status, slik beskrevet i 3.2.4.5. Idéen er at
brukeren velger ut et tidspunkt pa tidslinjen, og flyene vil bli plassert pa riktig plass for a reflektere
dette. Tidslinjen beskriver hele tiden "navaerende" tidspunkt og hvilke data som gjaldt pa dette
tidspunktet. Disse verdiene er interpolert ved hjelp av nzerliggende noder, se 3.2.4.6.

Merk ogsa at selv om diverse data blir representert ved hjelp av selve ikonene, er dataene ogsa
inkludert i informasjonsvinduene for & fa dem i tekstlig format.

Resten av datafeltene gjgres om til et passende format og vises direkte i informasjonsvinduene.

3.2.4 Verktgy og hjelpefunksjoner

Det viktigste nar det gjaldt a utforme grensesnittet var a bestemme hvilke verktgy som var mest
hjelpsomme for oppdragsgiver og andre sluttbrukere nar de skulle ta i bruk systemet . Malet med
vart system er at nar et lysfenomen blir observert i Hessdalen, skal det vaere enkelt a ga inn i vart
system og finne flytrafikken for tidsrommet der dette forekom. Det skal ogsa vaere enkelt a

33

sammenlikne data "side-by-side" for a se om det detekterte lysfenomenet kunne ha vaert et fly. For 3
oppna dette matte vi gi brukeren verktgy som viste den ngdvendige informasjonen pa en lett
tilgjengelig mate, og helst ogsa pa en sa detaljert mate at det var lett a ta en beslutning direkte pa
bakgrunn av dataene.

3.2.4.1 Sannsynlighet for fly (heatmap)

Det kan veaere fly som mangler senderen som flydeteksjonssystemer baserer seg pa. Dette gjgr at slike
fly vil vaere helt usynlige for slike systemer. Pa grunn av dette kunne det vaert til stor hjelp for
brukeren a se sannsynligheten for fly.

Lgsningen vi endte opp med, var en sakalt "heatmap". Denne fargelegger kartet avhengig av
forekomster, intensitet eller liknende — i dette tilfellet, den sammenlagte flytrafikken i en gitt
periode. Omrader der mange fly passerer vil ha en "varmere" farge enn omrader der det gar mindre
trafikk. Et generelt eksempel pa en heatmap kan ses i Figur 3.5. Dette gir brukeren en generell
oversikt over sannsynligheten for fly i et stgrre omrade.

Figur 3.5: Eksempel pa heatmap

M Heat map

- 100
60

Maten vi implementerte dette pa var ved a sette inn alle koordinatparene for de ulike flyene i et gitt
tidsomradet i en heatmap-funksjon, som lager et gjennomsiktig lag og legger det pa kartet. Fargen gir
fort og intuitivt et fornuftig estimat pa sannsynligheten for fly i et hvilket som helst omrade.

Hvis brukeren prgver a finne ut om det befant seg et fly pa en bestemt plass pa et bestemt tidspunkt,
kan det skje at ingen fly er registrert i databasen for det aktuelle tidspunktet. Da kan brukeren velge
a vise et heatmap med data fra for eksempel en uke tilbake i tid. Hvis man ser at omradet er sterkt

34

regdt (altsa at det var hgy intensitet av fly i det valgte intervallet), sa kan man konkludere med at selv
om ingen fly ble registrert, er det likevel relativt sannsynlig at det hadde veert et fly der.

Heatmap Igsningen vi tok i bruk var en eksisterende funksjon fra google.maps.visualization. Denne
tok imot en rekke punkter, og tegnet deretter en heatmap ut fra disse. Merk at denne Igsningen ikke
godtar linjer, man matte oppgi punkter. Vi bestemte oss for a bruke punktene direkte fra databasen,
uten a tilpasse disse ytterligere for & danne linjer (ved hjelp av for eksempel interpolasjon). Dette
gjorde vi pa grunnlaget at de valgte punktene allerede ga et tilstrekkelig godt bilde av flyets reise.

3.2.4.2 Begrensning av tidsrom og omrdde

For det f@grste var det klart at brukeren matte fa velge et ganske spesifikt tidsrom og geografisk
omrade for dataene som skulle uthentes. Begrensning av omradet kunne brukeren gjgre manuelt ved
a flytte og zoome pa kartet, men i tillegg la vi til en grense som kunne konfigureres for systemet.
Denne blir representert som et rgdt rektangel pa kartet, og angir en grense for omradet der flydata
blir hentet fra databasen. Vi valgte a sette denne grensen sapass generell at alle flydata i systemet
ville bli bli inkludert til 3 begynne med. Hvis oppdragsgiver sa gnsket det kunne denne forandres i
ettertid, for a begrense stgrrelsen pa utvalget. Denne grensen fungerte ogsa slik at brukeren ble
opplyst om hvor det kunne forventes a finne data.

| tillegg til dette skulle brukeren fa velge et tidspunkt (dato og klokkeslett) for nar data skulle
uthentes. For eksempel skulle alle fly mellom klokken 13.30 den 01.08.2013 og klokken 13.50 samme
dag hentes ut og vises pa kartet. Som et alternativ til dette la vi ogsa til muligheten for brukeren a se
pa flydata for "siste time" og liknende, hovedsakelig for a teste systemet. Ved hjelp av dette ble det
enkelt og intuitivt for brukeren a finne de dataene som var relevante.

3.2.4.3 Informasjonsvinduer for fly

Oppdragsgiver ba spesifikt om en knapp der det kunne velges om informasjonsvinduene skulle forbli
pa skjermen, eller om apning av et nytt informasjonsvindu skulle lukke det forrige. P4 denne maten
var det bade mulig for brukeren a ha flere informasjonsvinduer apne for 8 sammenlike informasjon,
men ogsa mulig a raskt ga over informasjon uten at skjermen ble for rotete, eller krevde manuell
opprydding.

| utgangspunktet har man bare et informasjonsvindu oppe av gangen. Hvis man trykker pa et nytt fly,
blir forrige informasjonsvindu lukket men det nye dpnes. | "sticky"-modus er det mulig a ha flere
informasjonsvinduer oppe samtidig, slik at man enkelt kan sammenlikne dataene for flere ulike fly.
Dersom sticky-modus slas av igjen, skal alle informasjonsvinduer lukkes.

Vi matte ta hensyn til at brukeren ved en feil kunne trykke pa sticky-knappen etter a ha dpnet flere
informasjonsvinduer. Dette kunne fgrt til at arbeid gikk tapt, og matte gjgres pa nytt. For a unnga
dette inkluderte vi en dialog som advarte brukeren om at X informasjonsvinduer ville lukkes hvis
brukeren valgte a skru av sticky-mode. Slik unngikk brukeren a tape arbeidstid ved et feilklikk.

3.2.4.4 Vise veien et fly tar (stier og observasjoner)

Slik nevnt flere ganger tidligere var det snakk om relativt store datamengder. Et dggn kunne
inneholde data om flere tusen punkter. Det var ikke utenkelig at en bruker hentet ut data for for
eksempel en dag eller to, og dette ville ha fgrt til et relativt stort antall ikoner pa kartet. Selvsagt

35

kunne brukeren "spole" frem og tilbake i tid (se 3.2.4.5) for a se banen til flyet, men dette var relativt
tungvint.

Vi bestemte oss for a tegne en enkel, rett linje mellom hver loggfgrte posisjon i en overflyvning.
Denne gir en mye klarere oversikt over hvor flyene kommer fra, og viser nesten ngyaktig hvor de
passerer fra fgrste til siste loggfgrte posisjon. Eventuelle avvik pa grunn av sma forandringer, svakt
kurvede baner og liknende anses a vaere neglisjerbare. En sammenlikning ser du i Figur 3.6:
Sammenliking, rettlinjet og buet path. Vi ser at forskjellen er minimal, selv i et konstruert eksempel
med overdreven svingning.

Figur 3.6: Sammenliking, rettlinjet og buet path

Uten path @ Rettlinjet path Buet path =

For ordens skyld skal funksjonen kunne slas av dersom brukeren gnsker det.

Slik funksjonen var opprinnelig, ble hver enkelt observasjon ogsa plottet pa kartet. Dessverre er ikke
Google Maps optimisert med tanke pa stgrre mengder "markers". Derfor ble det raskt problematisk a
tegne alle disse pa kartet, og det viste seg at en del av grunnen til dette var formatet pa ikonet. Til 3
begynne med brukte vi det samme ikonet for hver observasjon som for selve flyet (som egentlig bare
skulle representere hvor flyet befant seg i gyeblikket valgt ut pa tidslinjen). Bildet er gjengitt i Figur
3.7.

Figur 3.7: Vektorikon for fly

Vektorgrafikk er et format der man oppgir en rekke koordinater som representerer hjgrnene i bildet.
Dette gjgr at det er lett a transformere bildet i ettertid, for eksempel nar det dreier seg om rotasjon,
stgrrelse, farger, giennomsiktighet og andre aspekter vi kan tenke oss a ha bruk for. Vektorgrafikk er
ogsa mye mindre i filstgrrelse.

36

Problemet er imidlertid at denne fleksibiliteten har en pris — det blir betraktelig tyngre a prosessere
disse enn et enkelt bilde. Dette var akseptabelt (og ngdvendig) for selve flyikonet, men
holdepunktene pa stien til et fly kunne bruke betraktelig enklere ikoner, da vi ikke hadde bruk for all
denne funksjonaliteten.

Til 3 begynne med prgvde vi a bruke enklere vektorgrafikk, for eksempel bare en enkel sirkel, men til
og med dette var relativt krevende a prosessere nar det ble mange observasjoner a vise samtidig.
Den beste Igsningen var a ta i bruk rastergrafikk. Vi ofret muligheten til 8 forandre ikonet dynamisk,
men bildene ble til gjengjeld mye mindre krevende a vise, og ytelsen i applikasjonen ble merkbart
bedre.

Ikonet vi valgte a bruke var en svart sirkel med et hvitt sentrum, dette er avbildet i Figur 3.8: Flysti.
Dette ville mest sannsynlig alltid vaere lett synlig pa kartet, og var derfor perfekt far vart bruk. Etter 3
ha tatt i bruk dette ikonet hadde vi ikke lenger problemer med a tegne opp stier for fly.

For a gjgre det lettere for brukeren a skille ut enkelte fly pa kartet valgte vi a gi unike farger til ulike
overflyvninger. Flyet og dets tilhgrende "path" ble gitt samme farge. Det var selvsagt fordelaktig hvis
fargen tildelt et fly var sa unik som mulig i forhold til andre fly pa kartet. Vi valgte a Igse dette ved a la
en tilfeldig tallgenerator bestemme fargene for en overflyvning. Problemet med de fleste slike
generatorer er at de ikke faktisk er tilfeldige, de fglger visse trender. Dette ville veert for darlig for
vart bruksomrade. Det er mulig a oppna stgrre grad av "tilfeldighet" ved a gi tallgeneratoren et sakalt
"seed", altsa et tall som brukes som utgangspunkt for funksjonen. Sa lenge seedet er unikt vil ogsa
tallene produsert av generatoret mest sannsynlig vaere meget ulike tallene produsert av en generator
med et annet seed.

JavaScripts innebygde tilfeldig tallgenerator har ikke stgtte for a spesifisere seed-verdi. Vi matte altsa
ty til et eksternt bibliotek for a oppna den funksjonaliteten vi trengte. Seedet vi ga til funksjonen var
summen av flyets ID, rutenummer og registreringstidspunkt. Det var sterkt usannsynlig at to ulike
overflyvninger ville produsere samme tall, dermed var dette et bra seed.

Deretter brukte vi sa dette tallet for & bestemme de tre HSL-fargekomponentene til flyet, som vi til
sist konverterte til RGB-farger. Denne fargen brukte vi sa pa bade flyet og dets sti. Resultatet ser du i
Figur 3.8: Flysti.

Figur 3.8: Flysti

213

E6

37

Vi ser at flyikonet og stien har samme farge, samt at flyobservasjonspunktene er hvite sirkler med en
svart ytterkant. Disse er godt synlige bade i forhold til selve kartet og linjen for flyets sti.

Det skal ogsa nevnes at tidsrommet spesifisert av brukeren kan vaere stgrre enn intervallet for en gitt
overflyvning. Vi matte finne en Igsning pa dette problemet, slik at brukeren raskere kunne fa
detaljert (interpolert) informasjon om en spesifik overflyvning, uten 8 matte lete rundt pa tidslinjen.
Hvordan vi Igste dette er beskreveti 3.2.4.7.

En liten detalj som ma nevnes var stgrrelsen pa ikonene. Vi bestemte oss for a bruke relativt sma
ikoner, slik at kartet skulle bli mer oversiktlig ved store samlinger av fly. Vi valgte imidlertid 3 utvide
den klikkbare regionen, slik at man kunne trykke pa ikonet selv om pekeren var plassert litt utenfor.

Hele funksjonaliteten for a vise noder for loggfgrte posisjoner, og selve stien som forbinder disse, ble
gjort tilgjengelige for bruker a skru av og p3, slik at bruker selv kunne tilpasse etter behov.

3.2.4.5 Verktgy for manipulasjon av tid

| 3.2.4.2 spesifiserte vi brukerens muligheter for a8 bestemme tidsrommet for datauthenting. Innenfor
dette tidsrommet var det opprinnelig gnskelig & animeres disse i tid ved hjelp av "Play/Pause"-
funksjonalitet. Altsa hadde vi en tidslinje med markert tidspunkt for hva som ble vist akkurat "na", et
gyeblikksbilde. Muligheter for 3 justere tidspunktet frem og tilbake var lett tilgjengelig ved a trykke
pa ulike steder pa tidslinjen eller ved a dra i markgren. Hvert "gyeblikk" ville sa bestemme hvor

flyikonet skulle plasseres pa kartet, for 3 illustrere hvor flyet befant seg pa dette tidspunktet.

Ved hjelp av interpolasjonen beskrevet i 3.2.4.6 var det mulig a hente ut data fra en "kontinuerlig"
datamengde, i motsetning til de diskrete verdiene fra databasen. Uten dette hadde ikke tidslinjen
veert like relevant, da ikonene og deres verdier hadde blitt meget "hakkete". | denne situasjonen
hadde det veaert like greit & bare vise alle tilgjengelige data til brukeren samtidig. Dette var selvsagt
ikke mulig med kontinuerlig tidsutvalg, da det fantes potensielt uendelige mengder data (man kunne
teoretisk sett hente ut data fra klokken 17:36:50.762 hvis dette var gnskelig, for eksempel).

Med denne funksjonaliteten pa plass var animasjon relativt enkelt a fa til. Vi trengte bare a flytte det
valgte "gyeblikket" pa tidslinjen ved regelmessige intervaller. Det viste seg imidlertid at animasjon
ikke var viktig for oppdragsgiver, derfor implementerte vi ikke dette. Selve tidslinjen kunne na
manipuleres manuelt, for & velge tidspunkt for interpolering, dette var godt nok for
brukeropplevelsen. Animasjon hadde ikke tilfgrt noe betydelig utover dette.

3.2.4.6 LERP, linezr interpolasjon
Interpolasjon gar i hovedsak ut pa at man vil finne ut en tredje verdi som ligger mellom to andre
diskrete verdier. Dette er illustrert med et enkelt eksempel, se

38

Eksempel 3.1: Interpolasjonsoppgave.

39

Eksempel 3.1: Interpolasjonsoppgave

Hoyde: Hoyde:
31000m 32000m

Hoyde ved

r_tid = 30?

V
15 30 64

>

Problemstillingen er altsa at det finnes to sett med data, og man gnsker a finne verdien pa et punkt
plassert mellom disse. Fremgangsmaten er som fglger:

Hvis hgyden gar fra & veere 31000m til 32000m vil det si at det skjer en forandring pa 1000 meter.
Denne forandringen foregar i et tidsrom pa 64 - 15 = 49 tidsenheter (benevningen er irrelevant).
Tiden der vi gnsker a finne hgyden, 30, er 15 sekunder etter starttidspunktet.

Altsa vil vi vite hva hgyden er ut av totalt 1000 meter pa et tidspunkt som er 15 ut av totalt 49
tidsenheter. Dette er triviell matematikk:
X 15

15
m—@—>x—5*1000—306

Altsa er flyet i en hgyde av 31000 + 306 meter pa det angitte tidspunktet, 31 306 meter.

Denne metoden kan sa brukes for a interpolere alle de relevante dataene mellom to punkter (rader i
databasen).

Merk at det her er snakk om lineaer interpolasjon, det finnes andre mer avanserte metoder som ogsa
kan brukes for a fa mer ngyaktig resultater, men dette gir tilstrekkelig ngyaktighet for vart
bruksomrade.

Det skal nevnes at denne metoden potensielt kunne produsere feilaktige verdier, hovedsakelig hvis
en av nodene som utregningene ble basert pa inneholdt feil eller mangler. Alle slike verdier matte
altsa tas med en klype salt. Likevel gjorde dette det betraktelig lettere for brukere av vart system 3
finne ut om et potensielt lysfenomen var et fly eller ikke. Hvis omradet for et detektert lysfenomen
var midt mellom to flyregistreringer, slapp na brukeren & manuelt regne ut verdier for dette
omradet. Na ga vi brukeren verktgy for & automatisk fa dette opp ved a bevege tidslinjen, slik at
flyikonet ble plassert pa det aktuelle omradet. Verdiene som sa ble fremstilt var en tilnserming til hva
de ville ha veert hvis flydeteksjonssystemet hadde logget en verdi for dette gyeblikket.

3.2.4.7 Snarveier og praktiske funksjoner
Etter at de grunnleggende verktgyene var pa plass, viste testing raskt at programmet kunne bli litt
tungvindt a bruke. Ved a legge til noen mindre praktiske funksjoner, ble sluttbrukers opplevelse

40

straks mer behagelig. Disse viste seg ngdvendige hovedsakelig pa grunn av de store tidsrommene
som kunne hentes ut. Tidslinjen ble vanskelig & navigere med hvis denne omhandlet et stort
tidsintervall.

For det fgrste gjorde vi det mulig for sluttbruker @ begrense det uthentede tidsrommet til varigheten
til en enkelt overflyvning. For eksempel kunne bruker hente ut data for flere timer, for a fa en
overordnet oversikt. Deretter kunne det vise seg at det ikke var mer enn én relevant overflyvning i
hele utvalget. Denne funksjonaliteten gjorde det sa lett for bruker a velge denne overflyvningen, og
gjere et nytt utvalg som bare inneholdt tidsrommet for denne, slik at uninteressant data ble filtrert
bort. Etter en slik filtrering ble ogsa tidslinjen lettere & bruke, da den arbeidet pa et mye mindre
tidsrom.

En annen funksjon vi la til, som hovedsakelig var for a gjgre navigasjon pa tidslinjen enklere, var a la
brukeren hoppe til gnskede tidspunkt ved hjelp av kartet. Alle observasjons-noder pa kartet ble gitt
en "hopp til tidspunkt"-funksjon. Dette gjorde at tidslinjen ble satt til det tidspunktet for den valgte
observasjonen. Ved hjelp av dette ble det lettere for brukeren a "finne" en overflyvning pa tidslinjen,
for a fa frem flyikonet for denne. Deretter kunne ikonet beveges frem og tilbake pa overflyvningen

for a fa de interpolerte verdiene.

Etter 3 ha holdt en demo for oppdragsgiver viste det seg ogsa at systemet ikke var helt intuitivt,
spesielt med tanke pa heatmap og tidslinjen. Derfor la vi vil "hjelp"-ikoner ved disse, som forklarte
funksjonaliteten til programmet.

3.3 Database og backend

Databasen med flydata var helt kritisk for vart prosjekt, da alt vi foretok oss baserte oss pa disse
dataene. Det var viktig for oss at dataene var til 3 stole p3, og at vi fullt ut forsto betydningen av alle
kolonnene (datafeltene). Under har du en liste av alle kolonnene i databasen, eksempler pa data de
kan inneholde og hva disse dataene faktisk betyr. Hver rad i databasen omhandler ett
"@yeblikksbilde" av ett fly (en flyobservasjon), og inneholder alle disse datakolonnene.

Kolonner:

Hexident: 06A052
o Dette er ID'en pa den fysiske boksen som sender ut disse datameldingene, som s3

blir plukket opp av flydeteksjonssystemet.
- Postime: 1370085774
o Dette er tidspunktet for nar denne meldingen ble sendt ut, og derfor ogsa
tidspunktet for nar dette flyet hadde disse dataene.
- Flightid: QTR991
o Dette er ID'en pa ruten som et fly tar. Denne er for det meste unik og identifiserende
pa samme mate som hexident, men ikke stabil nok til at denne kan brukes pa noen
gunstig mate.
- Llatpos: 61.51859000
o Dette er breddegraden flyet var pd ved tidspunktet gitt av postime.
- Longpos: 11.16329000

41

o Dette er lengdegraden.
- Track: 295
o Dette er rotasjonen til flyet (ut av 360 grader).
- Speed: 483
o Dette er hastigheten til flyet.
- Altitude: 32000
o Dette er hgyden over havet som flyet befinner seg pa for gyeblikket.
- Verticalrate: 64
o Dette er hvor raskt flyet stiger (0 betyr at flyet flyr rett frem uten a stige eller synke).
- Incam:1
o Denne kolonnen tilsier om flyet befant seg i kameraet i Hessdalen ved dette
tidspunktet.
o Dette regnes ut av systemet til den tidligere prosjektgruppen.
- Regtime: 2013-06-01 13:35:16
o Dette angir tidspunktet for nar dataene ble logget til databasen. Merk at alle
punktene for en enkelt overflyvning lastes opp til databasen pa samme tid, slik at alle
far samme regtime.

En mer grundig beskrivelse av databasen finner du i Kapittel 4 Implementasjon.

Hvordan vi Igste de ulike problemstillingene med tanke pa databasen, og hvordan dataene skulle
behandles i vart system, er beskrevet i de neste delkapitlene.

3.3.1 Relevante kolonner

Hvilke kolonner vi tok i bruk ble hovedsakelig bestemt av arbeidsgiver. Generelt sett var det gnskelig
at sa mye data som mulig ble tatt med. De eneste kolonnene som var relativt uinteressante var
"incam" og "regtime".

Slik nevnt i databasebeskrivelsen i 3.3 var "incam" datafeltet som anga om flyet var innenfor omradet
der det ble fanget opp av kameraet plassert ved Hessdalen AMS. Dette ble regnet ut ved a se pa om
flyets koordinater var innenfor et sett med statiske verdier. Dette var litt problematisk da verdiene
som ble brukt som grenser bare var approksimasjoner. De tok heller ikke hensyn til flyets vinkel fra
bakkeniva, veer og avstand fra kameraet. Oppdragsgiver var enig i at dette ikke var spesielt brukbart,
og vi bestemte oss sa for a ikke ta med denne kolonnen i datafremvisningen. Dette kunne ha gitt
brukere et feilaktig inntrykk av at de for eksempel skulle kunne se et fly i kameraet, nar det i
virkeligheten var plassert hgyt over kameraet, for eksempel.

Nar det gjaldt "regtime" sa var dette et datafelt som tilsa nar dataene ble registrert i databasen.
Dette var ikke av interesse for oppdragsgiver eller sluttbruker. Det var bare et datafelt som ble brukt
av systemet. Vi tok likevel disse dataene med i dataoverfgringen, men det ble ikke tilgjengeliggjort
for sluttbrukeren. Grunnen til at vi tok det med var at regtime viste seg a veere kritisk for a kunne
gruppere punkter pa en overflyvning, se 3.3.6.

Alle andre kolonner ble tatt med, men det skal nevnes at flere ble gitt nye navn slik at det skulle vaere
mer forstaelige for sluttbruker. Dette er beskrevet i kapittel 4.

42

3.3.2 Feil og mangleridata
Dataene som plukkes opp av flydeteksjonssystemet kan inneholde feil. Det skjer ogsa at systemet
ikke klarer a identifisere en gitt verdi, og derfor setter disse til a veere en standard-verdi. Dette er 0

for tall-verdier og en tom streng ("") for tekst-baserte verdier. Vi matte ta hensyn til dette i var

Igsning, da spesielt 0-verdier kunne vaere problematiske a tolke.

Da vi innfgrte geografiske avgrensninger i systemet (slik beskrevet i 3.2.4.2), ble dette problemet
med feil i koordinatdata Igst. Alle koordinater utenfor de spesifiserte grensene ble filtrert bort ved
uthenting.

Nar det gjaldt de andre kolonnene, bestemte vi oss for a ikke "reparere" disse dataene. Dette var
hovedsakelig fordi vi ikke hadde noen gunstig mate a Igse dette pa. Hvis vi hadde for eksempel
interpolert verdier fra andre flyobservasjoner pa overflyvningen ville dette heller gitt et "falskt" bilde
av flyet. Da var det bedre & bare la feilene i data veere. Brukeren ville selv se nar data var mangelfulle,
slik som fly med hastighet "0".

Det skal ogsa nevnes at visse kolonner kunne ha ungyaktigheter. For eksempel kunne det skje at
Regtime (altsa tidspunktet der hele overflyvningen logges til databasen) ble forskjellig for 2 ulike
punkter i den samme overflyvningen. Dette skjedde hvis systemklokken akkurat hadde "tikket over"
til et nytt sekund midt mellom innsettingen av to rader i databasen. Vi lgste dette problemet enkelt
ved a bestemme at to naerliggende regtime verdier for samme overflyvning ble satt til den samme
verdien. Dette er beskrevet naermere i 3.3.6.

3.3.2.1 Uthenting av for store data

En problemstilling som var uungaelig nar brukeren kunne spesifisere tidsintervall for uthenting, var at
brukeren kunne velge a hente ut enorme mengder data. Brukeren ville uansett ha potensiale til a
sprenge grensene, selv om vi reduserte mengdene data (se 3.3.2.2). Det var hovedsakelig pa
webserveren at dette problemet presenterte seg. Eventuelle problemer med datamengde pa
klientmaskinen ville bare bli begrenset av maskinvaren, noe brukeren selv hadde ansvar for.

En meget fleksibel I@sning vi fgrst prgvde a implementere, var at systemet automatisk skulle forsgke
a hente ut data, og detektere problemer med plassmangel. Hvis problemet oppsto ville sa systemet
prgve igjen, men denne gangen med bare halvparten av dataene i fgrste omgang, deretter siste
halvdel for seg. Dette kunne sa bli gjort rekursivt helt til en akseptabel datamengde ble funnet.
Desverre hadde dette en stor problemstilling som viste seg a vaere ulgselig. Nar webserveren
oppdager at grensen for minneallokering er nadd, blir en uhandterbar feilmelding sendt fra systemet.
Programmet blir terminert, og det er umulig a berge situasjonen. Vi matte defor se pa alternative
Igsninger.

Etter & ha utforsket mulighetene fant vi en betraktelig bedre Igsning, som Igste alle problemene vi
hadde med minneallokering. Metoden vi hadde brukt tidligere for & hente ut data, var & samle alle
radene fra tabellen pa webservere fgr de sa ble sendt videre til klient i en stor "pakke". Dette var
fordi vi ikke var klar over muligheten for a skrive alle rader fra databasen direkte til output-stremmen
til klienten, etterhvert som de ble uthentet. Vi unngikk altsa at data ble aggregert pa serveren, ved at
de ble forlgpende hentet ut fra databasen, prosessert, og sa videresendt til klienten. Detaljene rundt
hvordan dette foregikk blir forklart neermere i 3.3.3 og 3.3.4.

43

3.3.2.2 Problemer med datamengde

| systemet kunne det oppsta situasjoner der vi hadde for mye eller for lite data til & fa en gunstig
fremvisning i vart system. Hvis vi for eksempel bare hadde ett punkt for en hel overflyvning, ville
disse dataene bli vanskelige a tolke, spesielt hvis de inneholdt feil. Vi bestemte oss likevel for a ta
med alle slike enkelt-punkter. Grunnen til dette var at effektmalet for vart system i bunn og grunn
var a bedre forsta lysfenomenene som forekommer i Hessdalen. Med dette klart for oss sa det seg
selv at 3 filtrere bort data som pa overflaten sa mangelfulle ut, kunne vaere et enormt feilsteg. Det
var ikke helt utenkelig at det kunne vaere en sammenheng mellom lysfenomenet og forekomster av
datamangel. Derfor arbeidet vi med den filosofien at vi tok med "sa mye data som mulig", sa sant det
lot seg gjgre a presentere pa kartet.

Vi valgte imidlertid a gi brukeren direkte tilbakemelding pa helt tomme utvalg, da dette kunne tyde
pa at systemet hadde veert offline i denne perioden. Brukeren fikk ogsa en liste med datoer der vi var
sikre pa at systemet ikke ville inneholde data. Disse var datoer vi kom frem til ved & manuelt
analysere dataene i databasen. Disse tidsperiodene var som fglger:

- 19.05.13til 22.05.13
- 10.06.13 til 08.08.13
- 18.08.13til 13.01.14
- 16.01.14til 24.01.14
- 27.01.14til 20.02.14

Unntaket til denne filosofien var situasjoner der vi hadde for mye data, at det var sa mye data a
prosessere at systembegrensninger hindret oss i a fremvise det. Dette kunne fa konsekvenser for
bade hvor store intervaller som kunne velges ut, samt om det i det hele tatt var mulig a bruke
dataene til dataanalyse (krever data fra store tidsrom for a gi brukbare resultater).

Problemet med for store datamengder oppsto ved en av de fgrste systemtestene vi utfgrte. En
tidsperiode pa en time kunne gi mange hundre rader av flyobservasjoner. Problemet oppsto pa
webserveren, som matte allokere plass til alle disse dataene fgr de ble sendt videre til klienten. Det
fantes en grense for hvor mye data man kunne allokere, og denne ble nddd raskt. Det var mange
mulige Igsninger pa dette problemet, og vi endte opp med a implementere flere av disse i vart
system.

For det f@rste kunne vi ha flyttet webserveren over til en annen maskin for a ha bedre kontroll pa
slike grenser, eller spgre driftsansvarlig om a gke grensene pa webserveren, men mer om dette i 3.4.

En annen mulighet var 3 hente ut dataene i "puljer". Altsad, man hentet ut litt data av gangen,
prosesserte det og sendte det videre til klienten, uten at data ble aggregert pa serveren. Det viste seg
at dette ville bli helt ngdvendig, ogsa for andre problemstillinger enn minneallokering. Hvordan vi
implementerte dette er forklarti 3.3.3.3.

Selv med disse Igsningen var problemet fortsatt et faktum: det var for mye data per overflyvning.
Mengdene var sa store at det ble ngdvendig a redusere samplingsfrekvensen til systemet. Dette ble
detaljerti 3.1.2.

Neste steg var sa a fa reflektert denne forandringen i dataene som allerede hadde blitt logget til
databasen fgr denne systemmodifikasjonen hadde blitt utfgrt. Her oppsto ngdvendigheten av a

44

gruppere fly, som vi dekker i 3.3.6. Etter at muligheten for a gruppere fly var pa plass, var det relativt
simpelt 3 tynne ut dataene i databasen.

3.3.2.3 Tynning av databasen

Behovet for a tynne ut databasen var et faktum etter noen av de tidligste testene vi utfgrte.
Databasen inneholdt ungdvendig store mengder data, sa store at det var problematisk for oss a ta
dem i bruk. Slik beskrevet i 3.1.2 fikk vi hjelp av den tidligere prosjektgruppen til a forandre pa
samplingsfrekvensen til systemet, slik at hver overflyvning fikk et mer gunstig antall punkter.

Dette skjedde imidlertid etter at systemet allerede hadde logget data i ca. et halvt ar, noe som
betydde at disse dataene matte bli tynnet for a reflektere forandringen i samplingsfrekvens.
Fremgangsmaten for hvordan vi Igste dette er beskrevet under.

Den generelle idéen for hvordan uttynningen foregar er relativt simpel (se Figur 3.3: Forbedret utvalg
av punkter, i begynnelsen av kapittel 3). Hvis man for eksempel har 100 punkter som oppgjgr banen
til en overflyvning, men man vil ha dette tynnet ut slik at man heller far 25 punkter til sammen, er

dette en relativt triviell jobb. % = 4, altsa skal vi ta med hvert fjerde punkt. Likevel var det ikke sa

rett-frem a utfgre en slik forandring.

Fgrste store problemstilling var hvor denne forandringen skulle utfgres. Skulle vi lage et SQL script
som utfgrte dette? | sa fall hadde vi et problem med hvordan man skulle klare a gruppere punkter til
en overflyvning med SQL, og deretter klare a iterere over alle disse punktene. Vi bestemte oss for at
dette kom til & bli ungdvendig komplisert, og heller ikke spesielt gunstig da dette var en engangs-
operasjon. Metoden vi valgte a ga for var heller a lage et php-script som hentet ut data fra
databasen, bestemte seg for hva som matte slettes, og sa produserte en .sql-fil som inneholdt
DELETE-statements (spesifiserer hva som skal slettes i databasen) for dette. En DELETE-statement per
flyobservasjon/rad som skulle slettes. Deretter kunne sa denne filen eksekveres, og databasen ble
tynnet ut.

Da vi valgte a ga for et php-script ga dette oss mye stgrre fleksibilitet med tanke pa logikken som
bestemte hva som skulle slettes. Derfor valgte vi a ga for en relativt sofistikert uttynningsalgoritme.

Prinsippet var det samme som fgr, man tok vare pa (for eksempel) hver fjerde rad, eller med andre
ord, sletter 3 rader, sa hoppes en rad over, deretter sletter man 3 til, osv. Men noe vi gjerne gnsket a
fa til var a alltid ta vare pa fgrste og siste rad, da dette garanterte en bra beskrivelse av flyets bane.
Problemstillingen oppstar nar man bade vil fa til dette, samtidig som man garanterer at det aldri blir
mer enn 25 rader igjen for en overflyning etter sletting. De valgte punktene skulle selvsagt ogsa vaere
jevnt distribuert (og ikke bare for eksempel de 25 fgrste).

Uten a ga for ngye til verks (da dette blir forklart i stgrre detalj i kapittel 4), sa kan dette greit
forklares med et eksempel:

Hvis man har 200 rader som oppgj@r en overflyvning, og man bare vil ivareta 4 av disse punktene,

kan dette gjgres slik: % = 50. Problemet er at dette ikke vil gi en jevn distribusjon. Hvis man

imidlertid gjgr det slik: % = 66.67, altsa at punktene 1, 66, 132 og 198 ivaretas, ser vi at dette er

jevnt fordelt utover omradet. Vi valgte deretter 3 bestemme at sist punkt alltid skulle med, vi bytter

45

ut 198 med 200. Vi ivaretar disse 4 punktene, og sletter alle andre. Dermed far vi et jevnt utvalg fra
hele intervallet.

Til sist skal det nevnes at grensetallet 25 (eller 4 i eksempelet over) er en gvre grense for antall
punkter som tas med. Hvis en overflyvning hadde mindre enn 25 punkter, ville dette fgrt til at alle
punkter ble ivaretatt. Det viktigste var bare a begrense antallet slik at det ikke ble problematisk a
jobbe med datamengden. Mindre enn 25 punkter ville ikke veere et problem for systemet.

For den fulle beskrivelsen se kapittel 4.

3.3.3 Dataflyt
Den komplette beskrivelsen av datastremmen vil beskrives mer i detalj i kapittel 4, men det er endel
hovedpunkter anngaende hvordan dette foregar som ma pa plass fgrst.

3.3.3.1 Dataoverforing, JSON vs. XML

Data, store mengder data, matte sendes mellom webserver og klientmaskin, dette var uungaelig.
Problemet var a finne et passende format. Et format som bade innfridde vare behov og var effektivt
nok til @ kunne behandle de datamengdene vi jobbet med. Det var uakseptabelt hvis responstid og
brukervennlighet ble redusert pa grunn av prosesserings- og overfgringstid.

Det ble klart tidlig at vi hovedsakelig hadde to alternativer, JSON og XML. Det var teknisk sett ogsa
mulig for oss a utforme vart eget format, men disse var sapass optimale at vi mest sannsynlig ikke
ville ha klart & utforme et bedre alternativ selv.

Hovedforskjellen pa disse er at JSON er mer kompakt, mens XML gir stgrre fleksibilitet. Spgrsmalet
var om vi trengte denne ekstra fleksibiliteten i vart system. Svaret var kort og godt nei. De dataene vi
trengte a overfgre var i all hovedsak flyobservasjonsobjekter, et dataobjekt som inneholdt et
predefinert sett med datafelter. Disse forandret seg aldri fra objekt til objekt, og hadde ogsa verdier
av samme datatype. Det var nettopp dette JSON var laget for. XML hadde veert relevant hvis de ulike
attributtene for et dataobjekt kunne variere mellom ulike objekter, men dette var ingen faktor i var
situasjon. Altsa gikk vi for JSON da det ikke bare var det optimale valget med tanke pa "plassbruk”,
men ogsa fordi det var betraktelig enklere a behandle JSON formatet i JavaScript enn det var 3
arbeide med XML.

3.3.3.2 Alternativer til PHP

Det var mange mulig alternativer vi kunne bruke istedenfor PHP, som var det mest apenbare valget
nar det gjaldt skriptsprak for webservere. Var problemstilling var at vi ikke hadde spesielt mye
erfaring med de andre alternativene. Det ville ogsa ha tatt tid bade a sette oss inn i de andre
alternativene for & se om de potensielt hadde noen fordeler fremfor PHP, samt tid for & forsta
spraket pa et sapass hgyt niva at vi kunne skrive effektiv kode i det.

Vi bestemte oss derfor for at de potensielle vinstene med alternativer til PHP var sapass usikre, at
den totale tidsbruken antakelig ikke ville vaere verdt det. Dessuten hadde alle gruppemedlemmer
erfaring med PHP fra tidligere, derfor var vi relativt trygge pa mulighetene vi hadde med spraket. Da
ingen umiddelbare feil eller mangler meldte seg, gikk vi for PHP uten a undersgke konkurrentene i
stgrre detal;.

46

3.3.3.3 Uthenting av data med kontinuerlig printing av JSON

Slik beskrevet i 3.3.3.1 var JSON var det mest gunstige valget for vart bruksomrade. Likevel kunne det
oppsta problemer med datamengder, slik beskrevet i 3.3.2.2. Det ble aggregert data pa web-serveren
mens det ble hentet fra databasen, deretter ble alt konvertert til JSON-format, som sa ble sendt til
klienten. Dette lot seg ikke gjgre med store mengder data, da webserveren ikke tillot & allokere nok
minne.

Lgsningen vi kom frem til, relativt sent i prosjektet, var a kontinuerlig konvertere de uthentede
dataene til JSON mens uthentingen fra databasen foregikk. Data ble hentet fortlgpende fra
databasen og gruppert i overflyninger (se 3.3.6). Dette ble bearbeidet, umiddelbart konvertert til
JSON og sendt til klienten. Fgr neste overflyvning ble behandlet var sa disse dataene friet opp, slik at
det aldri ble allokert store mengder data. Vi unngikk sa en av de stgrste og mest kritiske
problemstillingene i forbindelse med denne type prosjekt, der store data ma behandles og overfgres.
Til sist ma det nevnes at dette ogsa hadde vaert mulig med XML, hvis vi hadde valgt a ga for det
istedenfor JSON.

3.3.4 Prosessering av data, server vs. klient

Slik beskrevet i 3.3.3 gar det en datastrgm fra databasen til klienten, via en webserver. Data ma
prosesseres pa veien, og hvor denne prosesseringen er mest gunstig a utfgre er det vi skal ta for oss i
dette kapittelet.

| 3.4 beskriver vi hvor de ulike systemene blir driftet, noe som far store fglger for hvor
dataprosessering bgr forega. Resultatet vi kom frem til var at databasen og webserveren skulle forbli
pa skolens server, frigg. Lys- og flydeteksjonssystemet fortsetter a kjgre pa maskinen pa
oppdragsgivers kontor. Dette var ikke optimalt, men akseptabelt etter at disse ble oppgradert (se
3.1.1).

Med dette pa plass var spgrsmalet hva som skulle prosesseres hvor. Dataflyten beskrevet i 3.3.3
tilsier at alt begynner ved database-serveren pa frigg. Dette er dekket i 3.3.4.1.

Etter dette skal data grupperes, dette kunne veert gjort bade pa webserveren og pa klient-maskinen,
men vi velger 3 gjgre dette pa serveren. Dette er beskreveti 3.3.4.2.

Nar databaseserveren og webserveren har gjort sitt star vi sa igjen med klient-maskinen, som sa star
for resten av prosesseringen. Dette bringer opp et annen viktig moment nar vi snakker om
prosessering, stress. Hessdalen fenomenet er av internasjonal interesse, sa det er ikke utenkelig at
det potensielt kan bli flere som gnsker & bruke vart system samtidig. Altsa blir det stor pagang pa alle
deler av prosessen. Hva skjer hvis 10 brukere prgver a hente ut data fra databasen samtidig, gar
dette bra? Hva med webserveren? Hva med 100 forespdrsler tett oppunder hverandre?

Slik var Igsning er, vil prosesseringen pa serveren na vaere relativt "lett". Data hentes ut, gjennomgar
en relativt enkel prosessering pa webserveren, fgr de sa sendes videre til klienten. Slik beskrevet i
3.3.3.3 blir ikke lenger data aggregert pa webserveren mens det behandles, derfor er ikke dette
lenger en kritisk problemstilling. Bade database- og webserveren blir driftet pa skolens servere, og
med den relativt minimale prosesseringen som kreves av dem, burde de kunne takle denne
pagangen.

47

Det skal ogsa nevnes at dette blir en engangs-forespgrsel til serveren, det er ingen kontinuerlig
forbindelse tilstedet. Dette gj@r at nar serveren er ferdig med a behandle forespgrselen til en bruker
sa vil den ha helt frie hender nar neste forespgrsel dukker opp.

Til sist kommer vi til klienten, som star for all gjenstaende prosessering. Dette betyr at antall brukere
av systemet na er likegyldig, da prosessering, samme hvor krevende, uansett bare vil ga utover den
enkelte klientmaskin.

Da er det eneste som star igjen a forsikre seg om at klienten takler den arbeidsbyrden den na har
blitt tildelt. Dette er detaljerti 3.3.4.3.

3.3.4.1 Prosessering i databasen

Databasen gir oss de data vi gnsker, men har ogsa mulighet til & manipulere og filtrere disse ved
uthenting. Dette hentes sa inn til var webserver som kjgrer pa samme server-nettverk (frigg).
Deretter skal disse dataene prosesseres, konverteres til JSON og sendes til klient-maskinen.

Det fgrste vi ma ta med i bektraktningen er hvilke maskiner som er raskest og mest effektive med
tanke pa prosessering. Det er et faktum at databaseservere er designet fra bunnen av til a vaere
effektive pa a prosessere data. | tillegg kjgrer denne database-serveren pa skolens servere, som har
relativt mye ressurser tilgjengelige, og er saledes godt egnet for prosessering av data. Vi prgver altsa
a overlate sa mye prosessering som mulig til database-serveren.

Desverre har databasen den problemstillingen at SQL er relativt begrenset nar det gjelder avanserte
transformer og prosesseringer. Det er fullt mulig a fa til det meste med SQL, men det er relativt
tungvindt. Et av de stgrste behovene vi hadde med tanke pa bearbeiding av data, var a gruppere
punktene i en overflyvning til et objekt. Desverre var dette vanskelig/umulig & fa til med den
relasjonsdatabasen vi jobbet mot. Det hadde vaert mulig & bygget om pa strukturen i databasen for a
gjgre slikt lettere, men da hadde vi samtidig mattet endre pa flydeteksjonssystemet til den tidligere
prosjektgruppen. Dette gjorde vi ikke, slik detaljerti 3.1.

Noe databaser er usedvanlig godt egnet til er filtrering og sortering av data. Derfor ble begrensninger
av hvilke data vi hentet ut (for eksempel bare fly innenfor en gitt breddegrad) noe vi overlot til
databasen. | tillegg gjorde sortering av verdier det mye enklere & gruppere dataene pa webserveren.
Dette er trivielt arbeid for databaser, derfor overlot vi ogsa sortering til databasen.

Desverre var det begrenset hvor mye vi kunne dra nytte av databasens evner utover dette.

3.3.4.2 Prosessering pd webserveren

Et viktig poeng a dra frem nar det gjelder prosessering pa webserveren er gruppering av data. Nar
data grupperes blir det mulig & skille ut redundant informasjon, altsa far man mindre data a behandle
i senere deler av systemet. Dette er hovedsakelig grunnen til at vi valgte & utfgre gruppering pa
webserveren, slik at vi slapp a overfgre redundant data til klienten. Dette er selvsagt universalt
positivt. For a forklare hva vi mener med utskilling av redundant data, tar vi for oss et par rader fra
databasen, se Tabell 3.1: Databasekolonner 2 (kopi av tidligere tabell).

48

Tabell 3.1: Databasekolonner 2

Hexident Postime Flightid Latpos Longpos Track Altitude Osv.
06A052 1370085739 | QTR991 61.48540 11.30859 295 32000
06A052 1370085774 | QTR991 61.51859 11.16329 295 32000
06A052 1370085796 | QTR991 61.53936 11.07198 295 31975

Slik vi ser er dette ett fly i neerheten av Hessdalen, som har blitt plukket opp av sensoren. Hver rad er
et "punkt" pa kartet der flyet hadde dataene vist i de relaterte kolonnene. Vi ser at Hexident og
Flightid er lik for hele overflyvningen, noe som er logisk a forvente. Et fly vil ha samme id og
rutenummer for en hel overflyvning. De andre feltene vil imidlertid forandre seg (merk at Track
tilfeldigvis er lik for alle 3 rader i dette eksempelet, dette er en tilfeldighet).

Altsa kan vi sla sammen alle disse radene til en overflyvning, med de gitte Hexident og Flightid
verdiene, slik at disse bare oppgis en gang. Disse verdiene er deretter gjeldene for alle tilhgrende
punkter pa overflyningen. Vi har altsa spart oss for a ta med redundant informasjon, noe som betyr
at dataene sendt til klienten vil vaere betraktelig mindre. Pa denne maten sparer vi prosessorkraft og
bandbredde bade pa webserveren, linjen mellom server og klient og klientmaskinen.

3.3.4.3 Prosessering pd klientmaskinen
Na som klientmaskinen har mottat sine data, er det essensielt at arbeidsbyrden som har blitt overlatt
til den er noe den kan takle.

Dataene som klienten mottar ma plottes pa et kart, og selve denne jobben, samt manipulering av
kartet nar alle data er tilstedet, er klientens hovedoppgave. Slik detaljerti 3.3.2.2 ble det raskt et
problem med for store mengder data. Dette klarte vi a Igse ved a redusere samplingsfrekvens og
tynne ut databasen. Etter flere tester var det klart at systemet ble uresponsivt ved store datautvalg,
men at det fungerte tilfredsstillende innenfor intervallene oppgitt som gvre grense av oppdragsgiver
(maksimum et par dager).

Klientmaskinen ma hovedsakelig lage ikon-objekter for Google Maps, og binde disse opp mot kartet
sammen med tilhgrende informasjonsvinduer. Informasjonsvinduer inneholder dataene for et ikon
pa kartet (en flyobservasjon). Dette kan ikke kommes utenom, og er akseptabelt selv om det er en
krevende oppgave.

En annen problemstilling var hvor ngye flyets rute skulle beskrives. Vi matte selvsagt illustrere flyet
der det befant seg i et gitt "gyeblikk" (se 3.2.4.5). Spgrsmalet var om vi ogsa skulle illustrere den fulle
banen til flyet, altsa alle punkter pa overflyvningen. | tillegg burde disse forbindes med en linje slik at
sammenhengen var tydelig. Dette ville vaere relativt krevende, da mange ikoner og linjer matte vises
pa kartet samtidig.Dette lot seg I@se pa en gunstig mate, og er beskreveti 3.2.4.4.

Den siste store arbeidsoppgaven pa klientmaskinen var visning av en sakalt "heatmap", slik beskrevet
i 3.2.4.1. Dette gir brukeren en samlet oversikt over hvor flytrafikken var mest intens i det valgte
tidsrommet, og krever at brukermaskinen prosesserer en relativt stort sett med data. Alle
koordinatsett til flyobservasjoner innenfor et gitt intervall ma sendes til en funksjon som lager en
heatmap basert pa disse. Det viste seg imidlertid at dette hadde en uventet positiv effekt. Vart
heatmap baserte seg pa det samme tidsutvalget som allerede var gjort for kartet. Derfor var det

49

hovedsakelig snakk om de samme mengdene data, bare fremstilt anderledes. Det var mye lettere for
maskinen a prosessere og tegne opp et heatmap enn det var a tegne opp individuelle noder og fly. Pa
grunn av dette ble heatmap en praktisk mate a plotte store mengder data p3, uten at dette tok for
lang tid. Det en heatmap tegnet pa et par sekunder, tok naermere det tidobbelte nar alle noder skulle
tegnes individuelt. Altsa var generasjonen av selve heatmap-en neglisjerbar, og selve fremstillingen
pa kartet var mer effektiv enn det var med ikoner og linjer.

3.3.5 Analyse av data
Dataanalysen i vart prosjekt har to distinkte vinklinger, disse blir dekket i henholdsvis 3.3.5.1 og
3.3.5.2.

3.3.5.1 Dataanalyse for effektmadlet, forstdelse av lysfenomenet

Den f@rste type analyse er den som har til hensikt a fa bedre forstaelse for lysfenomenet i Hessdalen,
altsa en del av effektmalet for var oppgave. Hvis vi kunne introdusere direkte analysemuligheter for
dette, ville arbeidet til oppdragsgiver potensielt forenkles kraftig. Problemet med et fenomen av
denne karakteren er at det finnes potensielt uendelig med kilder. Det kan veere forarsaket av veer, fly
kan spille en viktig rolle, kanskje topologien til omradet er relevant? Pa grunn av de mange
muligheten vil fremgangsmatene for 8 komme til bunns i dette ogsa veere naermest ubegrenset. Det
ble meget vanskelig for oss a utarbeide former for analyse som ville vaere gunstige for arbeidsgiver,
da dette ville ha krevd mye tid og ressurser fra var side. Vi matte prioritere a bli ferdig med oppgaven
gitt i prosjektbeskrivelsen i fgrsterekke.

Et eksempel kunne veert at vi hadde en hypotese om at lavtflyvende fly var relatert til lysfenomenet.
For a verifisere dette matte vi ha implementert spesifik funksjonalitet for a fremheve lavtflyvende fly.
Dette bare for teste en hypotese.

Alle former for analyse av denne typen ville ogsa veert basert pa spekulasjon: "hva hvis X er relatert
til lysfenomenet". Analysemetoder matte utarbeides for hvert unikt tilfelle. Da vi ikke hadde noen
klar oversikt over hva som var interessant a analysere (da dette ikke var en del av var oppgave), sa vi
det best & ga bort fra denne type analyse. Vi overlot dette heller til fremtidige brukere av systemet,
som kunne utfgre dette manuelt. Vi fokuserte pa a legge til rette slik at ngdvendige verktgy skulle
vaere tilgjengelige for a best mulig kunne utfgre denne oppgaven. Ulike teorier kunne dermed
"manuelt" verifiseres ved hjelp av vart system. For a ga tilbake til eksemplet over, kunne et problem
av denne typen na Igses ved a lese av hgyde-verdiene for diverse fly. Eneste forskjell var at vi ikke na
la til dedikert funksjonalitet for dette.

3.3.5.2 Dataanalyse for resultatmadlet, bedre oversikt over flytrafikken

Den andre type dataanalyse relevant for var oppgave, var den som gjorde det lettere a bearbeide
data om flytrafikken generelt. Et eksempel pa dette var & analysere regelmessigheten av flyruter, slik
at det ble lettere & fa oversikt over disse. Dette kunne sa brukes som et verktgy for effektmalet i
ettertid. Et annet eksempel kunne vaere a analysere uregelmessigheten av fly, altsa fly som ikke var
del av en standard rute. Denne tankegangen hadde imidlertid en fundamental brist i logikken.
Lysfenomenet i Hessdalen viser seg pa tilsynelatende helt tilfeldige steder. Det var altsa irrelevant
hvilken type fly som passerte omradet, det var irrelevant om det var et regelmessig fly eller ikke. Det
eneste som var av interesse var om et fly, hvilket som helst fly, var i omrade pa samme tidspunkt som
lysfenomenet eller ikke.

50

Dette bringer oss til den typen analyse som viste seg a veere mest relevant for var oppgave,
sannsynligheten for fly. En stor svakhet ved flydeteksjonssystemet var at dette ikke hadde mulighet
for & hente inn data om fly som ikke inneholdt den relevante sensoren. Derfor ville det vaert meget
gunstig hvis vi kunne presentere for brukeren en sannsynlighet for fly i et valgt omrade.

Flere fremgangsmater fantes for denne type analyse (se 2.2.4.1). Den beste og mest praktiske a
implementere var en sakalt heatmap. Altsa et slags filter som legges over kartet, som representerer
intensiteten av fly ved hjelp av farger. Omrader som hadde mest flytrafikk innenfor et gitt intervall
ble gitt en "varmere" farge enn omrader der flytrafikken var minimal. P4 denne maten fikk brukeren
en approksimasjon for sannsynlighet for fly. Omrader med mye flytrafikk ville selvsagt ha stgrre
sannsynlighet for fly, enn omrader med liten flytrafikk. Selve implementasjonen av heatmap ble
dekketi3.2.4.1.

Problemet var hvordan denne Igsningen skulle implementeres. Heatmaps har den svakheten at det
gir en meget generell oversikt. Overblikket brukeren far er ikke ngdvendigvis spesifikt nok til & kunne
hjelpe med a bekrefte eller avkrefte om et fly befant seg i et omrade pa et gitt tidspunkt. Vi vurderte
muligheten for & la brukeren spesifisere parametere rundt hvilke data som skulle brukes for a lage et
heatmap. Lgsningen vi til slutt endte opp med var at tidsutvalget brukeren gjorde til tidslinjen var det
samme utvalget som heatmap-en baserte seg pa. Slik fikk brukeren full kontroll pa tidsintervallet, og
kunne derfor fritt bestemme hvilke data som skulle brukes.

Et usikkerhetsmoment sto igjen, og det var hvordan punktene som heatmap-en baserte seg pa skulle
behandles. Databasen inneholder diskrete verdier for en overflyvning, ikke en kontinuerlig "linje".
Altsa kunne for eksempel 25 punkter beskrive en strekning pa flere kilometer. Dette kunne i veerste
fall gi en darlig representasjon av overflyvningen, og derfor ogsa en darlig heatmap. Vi vurderte
muligheten for a Igse dette ved hjelp av interpolasjon (se 3.2.4.6). Pa denne maten kunne vi generere
sa mange punkter som vi gnsket.

Det viste seg imidlertid at en heatmap basert pa de diskrete verdiene fra databasen var mer en godt
nok for vart bruk, da dette ga et tilstrekkelig bilde av en overflyvning.

3.3.6 Gruppering av fly i en overflyvning

Behovet for & gruppere flyobservajoner i en overflyvning ble umiddelbart klart for oss da vi fant ut at
databasen matte tynnes, slik beskrevet i 3.3.2.3. Gruppering var ogsa viktig med tanke pa hvordan
dataene ble behandlet pa kartet, samt andre mer avanserte funksjoner (slik som 3 vise stier, se
3.2.4.4). Hvilke muligheter vi hadde for gruppering er beskrevet i delkapitlene under.

For a spesifisere ngyaktig hvilken type gruppering det er snakk om, dreier det seg altsa om
gruppering av alle punkter som et fly "etterlater" seg mens det flyr over Hessdalen. Mens flyet
passerer (i en enkelt overflyvning) vil flysensoren lese av data fra flyet ved regelmessige intervaller,
disse lagres som separate rader i databasen. Alle disse tilhgrer en logisk gruppe, en "overflyvning". Et
fly som kom tilbake senere ville bli behandlet som en separat overflyvning.

Malet for gruppering er sdledes a bruke dataene fra flyobservasjonene for a finne ut hvilke som hgrer
sammen. Deretter kan disse behandles som ett objekt i resten av systemet.

Vi vurderte flere metoder som kunne ha gjort gruppering meget lettvint. Blant annet a introdusere
en ekstra kolonne i databasen som identifiserte en overflyvning. Alle disse metodene hadde

51

imidlertid en stor svakhet, det krevde at vi utfgrte fundamentale forandringer i
flydeteksjonssystemet, som sa matte bli reflektert for alle data allerede logget til databasen. Derfor
matte problemet Igses ved a se pa kolonner allerede tilstedet i databasen.

3.3.6.1 Gruppering ved hjelp av hexident og postime

Gruppering ved hjelp av hexident og postime vil si at man ser pa en hexident (en unik identifikator for
et spesifikt fly) , samt tidsforskjeller (gitt av postime) mellom ulike observasjoner av dette flyet. Hvis
man tok for seg alle observasjoner av en hexident, og deretter sa pa tidsforskjellen mellom disse,
kunne alle punkter som var innenfor en gitt grense grupperes. Man dannet altsa logiske grupper for
hexident'er som forekom rundt samme tidspunkt, altsa overflyvninger.

Denne Igsningen virket lovende, men etter a ha holdt et mgte med Dick fra den tidligere
prosjektgruppen, ble vi klar over en viktig detalj. Det var en liten mellomlanding i naeerheten av
Hessdalen der fly kunne sta pa bakken i bare fa minutter, fgr de sa flgy videre (nd med et nytt
rutenummer). Dette tidsrommet kunne vaere mindre enn tidsforskjellen mellom to punkter pa en
overflyvning. Altsa ville en gruppering pa denne maten ga glipp av en signifikant hendelse, spesielt
med tanke pa at flyet som tok av fra denne mellomlandingen na kanskjen hadde en helt ny Flightid
(et slags rutenummer). Det kunne ogsa bli problematisk a prgve a skille pa flightid, da denne (slik
nevnt i 3.3) ikke var til & stole pa. Flightid kunne til tider vaere "blank".

Derfor gikk vi bort fra denne tilnaermingen, og sa pa muligheten for a bruke Flightid, slik beskrevet i
neste delkapittel.

3.3.6.2 Gruppering ved hjelp av FlightID

Denne tilnaermingen hadde en stor problemstilling som gjorde at det nesten umiddelbart ble umulig
a bruke denne metoden. Flightid-feltet i databasen var et datafelt som i motsetning til hexident
kunne vaere "tom". Altsa kunne rader i databasen vaere uten flightid. Vi hadde heller ingen garanti for
at flightid forble konstant for en overflyvning (spesielt med tanke pa feil som kunne oppsta i
flydeteksjonssystemet). Selv om flightid potensielt sett kunne vaere ideell for gruppering, var det
vanskelig a finne en Igsning hvis denne manglet data. Disse usikkerhetene fgrte til at vi raskt gikk bort
fra a bruke flightid til noe sa kritisk som a gruppere data.

3.3.6.3 Gruppering ved hjelp av hexident og regtime

Gruppering ved hjelp av hexident og regtime baserer seg pa en antakelse, at regtime er tidspunktet
der systemet lagrer en overflyvning til databasen. Altsa at denne er lik for alle flyobservasjoner i
overflyvningen. Nar dette er tilfellet kan sa gruppering skje hovedsakelig pa regtime, med hexident
for a skille pa overflyvninger som ble registrert ngyaktig samtidig. Hexident er altsa en unik
identifikator pa et bestemt fly.

Det eneste problemet med denne fremgangsmaten er at regtime potensielt kan inneholde sma
variasjoner innenfor en overflyvning. Regtime er et datafelt som blir opprettet nar dataene logges til
databasen, og alle observasjoner som utgjgr en overflyvning blir lagret til databasen samtidig.
Problemet oppstar hvis den interne systemklokken i databasen "tikker over" til et nytt sekund mens
lagringen utfgres. | slike situasjoner vil det altsa oppsta et skille i regtime, selv for observasjoner som
egentlig tilhgrer samme overflyvning. En liknende problemstilling oppstar hvis flyet er usynlig for
systemet i et kort tidsintervall (se "LAST_POS_TIMEOUT" i 4.1.3). Hvis dette intervallet er langt nok vil

52

systemet anta at flyet har forlatt sensorens radius, og overflyvningen blir konkludert og lagret i
databasen. Deretter dukker flyet opp igjen, men na blir dette en ny overflyvning.

Dette var en problemstilling vi effektivt kunne Igse ved @ "manuelt" sette sammen grupper der
regtime-verdiene var innenfor en gitt grense. Altsa hvis flere observasjoner med samme hexident
forekom med regtime verdier som var kort tid fra hverandre, ville disse bli satt sammen til samme

gruppe.

Regtime feltet genereres av funksjonen "Now()" i databasen, altsa tidspunktet i databasen nar
dataloggingen finner sted. Etter a ha undersgkt denne funksjonen i detalj viste det seg at det var
sterkt usannsynlig at en overflyvning skulle fa ulik regtime pa punkter i en sammenhengende
overflyvning. En del av dokumentasjonen til "Now()" ser du under:

"NOW () returns a constant time that indicates the time at which the statement began to execute.

(Within a stored function or trigger, NOW () returns the time at which the function or triggering

statement began to execute.) This differs from the behavior for SYSDATE (), which returns the exact
time at which it executes." (Oracle, 2014)

Slik vi ser av denne dokumentasjonen sa returnerer NOW() tiden da denne funksjonen begynte a
eksekvere. Vi antar at dette betyr tidspunktet nar databasen mottar forespgrselen om a lagre en
overflyvning. Flydeteksjonssystemet overfgrer alle radene i en overflyvning samtidig, ergo burde
disse bli tildelt samme regtime, selv om tiden skulle forandres under lagring.

Det er fortsatt mulig at flydeteksjonssystemet overfgrer en og en rad, slik at de teoretisk sett kan fa
ulike tidspunkter, men dette er ogsa meget usannsynlig. Databasehandteringen i deres programkode
sprget mest sannsynlig for at alle forespgrslene overfgres som en transaksjon til databasen. Desverre
var det problematisk a finne ut ngyaktig hvordan dette foregikk uten a ha satt oss grundig inn i
flyeteksjonssystemet og dets biblioteker.

Vi undersgkte ikke dette naeermere, da vi likevel ikke kunne vaere sikre pa at alle leddene i prosessen
var helt ngyaktige. Derfor valgte vi a utforme var Igsning slik beskrevet tidligere, at overflyvninger
med nzerliggende regtime verdier ble slatt sammen. Pa denne maten var vi sikret mot potensielle feil
som kunne oppsta, uavhengig av system.

Bruken av hexident og regtime for gruppering var altsa vellykket. Disse datafeltene var ogsa meget
palitelige. Hexident var del av tabellens primaerngkkel, som automatisk garanterte at denne var unik
og veldefinert. Regtime ble produsert av en funksjon i databasen, derfor var det ogsa umulig at
denne kunne fgre til problemer.

3.3.6.4 Oppslag i eksterne systemer

Det var ogsa en fijerde mulighet for gruppering, som vi i vaerste fall kunne ty til. Hvis dataene i
databasen ikke hadde veert tilstrekkelige til gruppering, kunne oppslag i eksterne systemer hjelpe oss
a finne ut hvilke flyobservasjoner som hgrte sammen.

Vi utforsket ikke denne mulighet i stgrre grad, da vi oppnadde en akseptabel Igsning med hexident
og regtime. Denne muligheten er likevel verdt a nevne, da det antakelig hadde blitt helt essensielt
hvis regtime-feltet ikke eksisterte i databasen.

53

http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate

En slik Igsning ville mest sannsynlig ha innebaert at ngkkel-verdier fra databasen skulle slas opp i
eksterne systemer, som kunne gitt os data for a hjelpe med gruppering. Dette ville fgrt til at
datauthenting hadde tatt betraktelig mer tid, da forespgrsler til eksterne systemer matte skje for
hver eneste overflyvning. Det var altsa meget gunstig for brukeropplevelsen at vi kunne Igse
problemet pa en annen mate.

3.3.6.5 Hvor grupperingen finner sted

Etter at grupperingsmetoden var pa plass, var spgrsmalet hvor dette skulle finne sted. Gruppering av
data var en relativt tidskrevende prosess. Derfor var det gnskelig at dette foregikk pa en del av
systemet som hadde ressurser nok til a gjgre dette raskt og effektivt.

Den optimale Igsningen ville vaert a utfgre selve gruppering i databasen. Dette var desverre umulig
da databasen ikke omhandler objekter, men enkeltrader. | teorien ville det vaert mulig a gjort en
uthenting som gjorde gruppering enklere, men full gruppering ville ikke la seg gjgre. Data matte
uansett bli videre prosessert pa webserveren fgr det ble gjort om til JSON format og sendt til
klienten. Det var dette vi valgte a gjgre.

Gruppering pa webserveren var relativt enkelt, da vi hadde direkte kontroll over
databaseuthentingene, samt mulighet for mer avansert programmering (noe databasen selv ikke
stgttet direkte). Webserveren var ogsa plassert pa en relativt kraftig maskin, slik spesifiserti 3.4.3,
dermed burde ikke arbeidsbyrden by pa problemer. Grupperingen var heler ikke en sa krevende
prosess at det ville fgre til problemer ved stor pagang. Derfor valgte vi 8 utfgre datagrupperingen pa
webserveren.

Det skal ogsa nevnes at det var mulig a gruppere data pa klientmaskinen, men dette hadde
hovedsakelig to store problemstillinger. For det fgrste matte data enten hentes direkte til klienten,
eller sa matte det sendes fra webserveren ugruppert. En direkte forbindelse ville betydd at
klientmaskinen hadde login-informasjon til databasen, noe som var uakseptabelt. Problemet med &
overfgre ugrupperte data var at dette fgrte til ungdvendig bruk av bandbredde. Gruppering pa
webserveren fgrte til at redundante data som hexident (lik for alle punkter pa overflyvningen) bare
ble oppgitt en gang, og deretter var gjeldende for hele overflyvningen. Beste Igsning var altsa a
utfgre gruppering pa webserveren.

3.4 Plassering og drifting av systemer

Var lgsning omfattet tre ulike systemer, alle disse utfgrte relativt krevende arbeid. De kommuniserte
ogsa seg imellom. Det var mange muligheter nar det gjeldt hvilke maskiner disse skulle kjgre pa, og vi
matte bestemme oss for hvilken plassering som ville bli mest gunstig for hvert enkelt system, og for
helheten.

3.4.1 Database

Da prosjektet begynte kjgrte databasen pa frigg.hiof.no, en server som driftes av hggskolen. Da
databasen kontinuerlig ble fylt opp med informasjon, og data aldri ble slettet, var vi avhengige av at
lagringsmediumet kunne utvides hvis dette skulle bli et problem. Det var altsa viktig a tenke pa at
serveren som hostet databasen ble overvaket og vedlikeholdt regelmessig. Dette oppnadde vi
enklest ved a la databasen forbli pa skolens server. Skolen var ansvarlig for a holde serveren ved like,

54

som fgrste til at eventuelle ngdvendigheter, slik som utvidelse av lagringsmedium, var noe som
automatisk ville bli tatt hand om.

Eventuelle systemfeil som fgrte til at databasen ble utilgjengelig ville ogsa bli raskt Igst nar vi lot
databasen bli driftet pa skolens server. Hadde vi flyttet databasen til den dedikerte maskinen pa
arbeidsgivers kontor, kunne det potensielt ta maneder fgr dette ble Igst. Hele vart system ville sa
blitt utilgjengelig i denne perioden. Det skal ogsa nevnes at denne maskinen hadde ansvar for
lysdeteksjonssystemet, et system som utfgrte krevende bildeanalyseoppgaver. | tillegg var
flydeteksjonssystemet ogsa plassert pa denne maskinen. Altsa var beste valg a la databasen forbli pa

frigg.

3.4.2 Flydeteksjonssystem

Fly- og lysdetksjonssystemene kjgrte pa en dedikert maskin pa oppdragsgivers kontor. Denne ble
sjeldent vedlikeholdt. Disse var to helt separate systemer, men begge var allerede tett integrert med
maskinen de kjgrte pa. Lysdeteksjonssystemet utfgrte relativt tunge bildeanalyseoperasjoner flere
ganger i sekundet. Dette systemet hadde ogsa problemer med en minnelekkasje, som gjorde at hele
maskinen som drev begge systemer kraesjet regelmessig. Dette var ikke en optimal Igsning. Da vi
snakket med den tidligere prosjektgruppen kom det frem at de opprinnelig gnsket at systemet skulle
driftes pa Frigg (skolens server), men dette var ikke mulig a fa til. Ved et senere tidspunkt gikk den
tidligere prosjektgruppen inn i systemet for a prgve a Igse disse problemene, se 3.1.2 for en
forklaring pa hva dette innebar.

Etter at systemet hadde blitt forbedret konkluderte vi med at det var uoptimalt & hoste dette
systemet pa maskinen pa oppdragsgivers kontor, men dessverre var det ingen annen mulighet.
Dessuten var Igsningen mer akseptabel, na som systemet hadde blitt forbedret. Eventuelle feil ville
ogsa bare ga utover flydeteksjonssystemet, ikke vart eget system (med unntak av datamangel i
perioder der systemet var nede). Selv om dette systemet sluttet a fungere, ville fortsatt vart system
fungere som normalt, fordi det bare baserte seg pa dataene fra databasen, samt webserveren.

3.4.3 Webserver

Plassering av webserver var den vanskeligste problemstillingen med tanke pa hva som ville vaere
mest gunstig. Dette var hovedsakelig fordi vi hadde et problem med & hente ut de store mengdene
data som systemet vart arbeidet mot. Ved prosjektstart ble vi tildelt plass pa skolens webserver,
frigg. Altsd samme server som databasen kjgrte pa. Pa grunn av dette hadde vi lite kontroll over selve
webserveren.

Vi vurdert derfor a flytte dette over til samme maskin som flydeteksjonssystemet, for a fa full kontroll
pa webserveren. Likevel, slik beskrevet i forrige delkapittel, sa var antakelig ikke dette en god ide.
Dette var fordi problemene med lysdeteksjonssystemet, og generelt darlig vedlikehold av maskinen,
gjorde dette for ustabilt til at dette kunne vaere en varig Igsning.

Hessdalenfenomenet er ogsa av potensiell internasjonal interesse, noe som kan fgre til perioder med
store mengder trafikk. Hvis vart system var ustabilt, kanskje regelmessig, ville dette vaere uegnet til
bruk pa et webomrade som dette.

Derfor var det altsa klart at vi matte ga for en mer stabil webserverlgsning. Spgrsmalet var om vi lot
websiden forbli pa frigg, eller om vi sa etter andre leverandgrer. Vi bestemte oss for a bruke frigg, da

55

dette var en stabil server vedlikeholdt av skolen. Hvis det skulle vise seg a bli problemer i fremtiden
kunne websiden lett flyttes. Merk ogsa at var side potensielt kunne bli innlemmet i
hovedwebomradet for Hessdalen. Derfor utarbeidet vi var Igsning slik at den lett kunne flyttes i
ettertid.

Problemet vi deretter matte ta hensyn til var at vi na hadde begrenset kontroll pa webserveren. Et
problem med minneallokering oppsto raskt. Webserveren tillot ikke allokering av de store mengdene
data som vart system arbeidet med. Vi fikk gkt denne grensen ved a ha snakket med driftsansvarlig
for frigg, som gjorde at vi na kunne hente ut betraktelig mer data. Desverre var det ikke sikkert at
denne Igsningen var permanent, derfor endte vi blant annet opp med a tynne ut dataene i
databasen. Dette ble dekket i detalji 3.3.2.2.

Problemet med dataallokering Igste seg imidlertid da vi oppdaget muligheten for kontinuerlig
printing av JSON, slik beskrevet i 3.3.3.3. Dette gjorde at data aldri ville bli aggregert pa webserveren
utover en enkelt overflyvning, derfor var vi na trygge pa a aldri na grensen for minneallokering.

En siste problemstilling vi sto ovenfor var hvordan webserveren ville tale stor pagang, med tanke pa
at blant annet gruppering av data og liknende ble prosessert av serveren. Ville dette fgre til
problemer hvis for mange klienter aksesserte serveren samtidig? Frigg er en server som har ansvaret
for a hoste mange systemer ved hggskolen, derfor var det sannsynlig at denne vile tale eventuell stor
pagang. Det var nettopp derfor frigg var et ideelt valg for webserveren, da den var designet for a
handtere slik pagang. Vi valgte altsa a la webserveren vaere pa frigg, men med den forutsetningen at
vi matte ruste vart program for a takle potensielle feil som kunne oppsta, slik at ikke vart system
sluttet & fungere hvis en eventuelle grense ble nadd. Til gjengjeld for at vi tok i bruk en webserver vi
ikke selv kunne administrere, var dette en stabil server som ville bli vedlikeholdt selv etter at vart
prosjekt konkluderte.

| ettertid, da produktet var ferdig utviklet, ble systemet integrert med hovedsiden for
Hessdalenprosjektet, Hessdalen.org. Vi regnet med at denne hadde minst like god kapasitet som
frigg, og dermed ble dette bare en detalj som ikke ga utslag pa ytselsen.

3.5 Arbeidsmetode

Da programmering var en vesentlig del av vart prosjekt, var det viktig & legge til rette for at dette
kunne skje mest mulig effektivt. Derfor var det & utarbeide konkrete arbeidsmetoder helt kritisk for &
fa et vellykket prosjekt.

3.5.1 Versjonshandtering
To alternativer som ble presentert for oss var Git og SVN, der SVN var i overkant simplistisk og Git i
overkant komplekst med tanke pa var arbeidsmetode (se 3.5.2).

Lgsningen vi valgte a ga for var Mercurial (med klienten TortoiseHg) (TortoiseHg, 2014). Denne hadde
et gruppemedlem hatt erfaring med tidligere, derfor var vi sikre pa at programvaren dekket de
behovene vi hadde for vart prosjekt. Mercurial var ogsa en Igsning der hver bruker hadde sitt eget
lokale repository (se 2.5.1), noe vi spesifikt gnsket av Igsningen. Det var heller ikke like problematisk

som Git med tanke pa brukervennlighet. Derfor var Mercurial er en god balanse mellom Git og SVN,
og perfekt for vare behov.

56

3.5.2 Delegering av arbeidsoppgaver

Programmering har den problemstillingen at det kan vaere vanskelig a delegere ut arbeidsoppgaver,
da det ofte krever en helhetlig oversikt over systemet for a kunne utarbeide en Igsning. Det er ogsa
viktig a ta med i betraktningen at potensielle feil i et ledd av programkoden kan ha katastrofale
konsekvenser for andre deler av systemet. Samt at deler av programmet kan anta visse ting om
andre deler, noe som byr pa problemer hvis disse antakelsene viser seg a ikke bli innfridd.

Altsa er det konseptuelt problematisk a dele opp programmeringsarbeid, sa sant det ikke er snakk
om frittstaende deler som kan utvikles separat. Var lgsning var en enkelt webside, der det var
problematisk a dele opp arbeidet pa en gunstig mate. Dette var i hovedsak fordi behandling av data
fra databasen, og hvordan dette ble vist frem, var den stgrste (og nesten eneradende) delen av
arbeidet. Hvert ledd i kjeden var tett knyttet sammen, slik at det naermest var umulig a utarbeide
disse delene individuelt. Hvert ledd av utviklingsprosessen matte ha vaert klart definert og testet for
neste del kunne fungere, og forandringer i konsepter (som var uunngaelig i lengden) ville fa
konsekvenser for hele prosjektet - alle andre ledd. Hvis disse delen ble utarbeidet separat, ville det
bli enormt komplisert og forandre og integrere disse.

Vi valgte a Igse denne problemstillingen ved a hovedsakelig overlate programmeringsarbeid til ett
gruppemedlem. Lgsninger ble utformet i fellesskap, men selve implementasjonen ble utfgrt av en
person. Ved hjelp av versjonshandteringen beskrevet i delkapittel 3.5.1, var det lett for alle

gruppemedlemmer a holde fglge med utviklingsprosessen, selv om man selv ikke aktivt arbeidet pa
koden. Pa denne maten var alle tett involvert i utviklingsprosessen, men vi slapp problemstillinger
med delegering av programmeringsjobber til flere gruppemedlemmer.

Da vi hovedsakelig hadde en person som jobbet med implementasjonen av programmene, hadde vi
mulighet til 3 effektivt arbeide med rapport og liknende samtidig som programmene ble utviklet. Vi
fikk altsa en situasjon der vi konstant hadde fremgang i prosjektet, mens vi pa samme tid fikk loggfert
det ngye (se delkapittel 3.5.3). Det meste av arbeidet foregikk som gruppearbeid, slik at alle var
tilgjengelig for spgrsmal, forslag osv. i de ulike fasene av prosjektet. Nar det gjaldt konseptuelle
problemstillinger som matte Igses, slik som hvordan vi skulle gruppere data (se 3.3.6), ble disse som
oftest utarbeidet pa et mgte med alle tilstedet. P4 denne maten fikk vi oversikt over alle muligheter
med bidrag fra alle gruppemedlemmer, og alle var til en hver tid klar over statusen til prosjektet.

3.5.3 Loggfering av arbeid

Prosjektet strakk seg over flere maneder med arbeid, og alt arbeidet skulle resultere i en
hovedrapport sammen med sluttproduktet vart. Denne hovedrapporten skulle inneholde en detaljert
beskrivelse av alt arbeidet som hadde skjedd i prosjektet. Derfor var det viktig a loggf@re arbeidet
grundig, slik at dette lett kunne innarbeides i hovedrapporten senere. En av de viktigste formene for
loggf@ring i vart prosjekt var issue tracking, altsa en oversikt over arbeidsoppgaver i
programlgsningen var. Se 3.5.3.1.

3.5.3.1 Issue tracking

Vi bestemte oss for a bruke Mercurial for versjonshandtering, da det inneholdt den funksjonaliteten
vi hadde behov for. Det var ogsa enklere hvis administrasjon av issues og versjonshandtering ble
behandlet av det samme systemet. Selve funksjonaliteten til Mercurial var ogsa riktigere for vart
prosjekt enn de andre Igsningene vi sa pa. Dette hadde bade med brukervennlighet, tekniske
muligheter og st@tte for eksportering a gjgre. Mercurial lot oss raskt og enkelt binde commits (en

57

forandring i koden) opp mot et pagaende issue i Bitbucket. Mulighetene for 3 opprette og behandle
issues var ogsa bedre i Mercurial.

3.5.3.2 Mpgtereferater
| Igpet av prosjektet har det selvsagt veert mange mgter. Disse var hovedsakelig delt i to ulike typer,
mgter med oppdragsgiver/prosjektveileder og interne megter for gruppen.

Disse var begge pa samme format, men hadde to meget ulike hensikter. Mgtene med oppdragsgiver
og prosjektveileder var hovedsakelig for a administrere gangen i prosjektet, og for a fa vite
oppdragsgivers gnsker angaende problemstillinger. Altsa for a legge en plan for videre arbeid i
prosjektet.

De andre mgtene som var internt for var gruppe ble mer som en arbeidslogg for hvordan vi hadde
angrepet problemstillinger, og hvilke Igsninger vi hadde kommet frem til. Pa denne maten hadde vi
til en hver tid oversikt over hendelser som forekom, selv med mgter som bare var diskusjoner internt

i gruppen.

3.5.3.3 Fortlppende hovedrapportskriving

Senere i prosjektet, etter at vi hadde kommet godt i gang med selve implementasjonen av
sluttproduktet, begynte vi a arbeide aktivt pa sluttrapporten. Pa denne maten hadde vi et ferdig
rammeverk, der hendelser i prosjektet kunne settes direkte inn etterhvert som de oppsto. Dette
gjorde det lettere a innarbeide informasjon inn i rapporten. Rapporten ga ogsa alle
gruppemedlemmer en detaljert oversikt over prosjektets status sa langt, samt en oversikt over
arbeidet som gjennsto.

Alternativet hadde veert 3 utarbeide hele rapporten mot slutten av prosjektet, noe som hadde fgrt til
at hele rapportstrukturen med innhold matte lages samtidig. Og da dette selvsagt hadde forekommet
flere maneder etter prosjektstart, ville det blitt vanskelig a fa dekkende beskrivelser av hendelser fra
tidligere i prosjektet. Ved a heller arbeide med hovedrapporten under store deler av prosjektet, ga
det ogsa en mer jevn presentasjon av forlgpet, og ikke bare den siste tiden. Dette gjorde det ogsa
mulig a presentere de ulike mulighetene vi hadde for a Igse diverse problemstillinger, og ikke bare
den Igsningen vi valgte a ga for. Resultatet ble kapittel 2 og kapittel 3 slik de er utformet i denne
rapporten.

3.5.3.4 Timetall

| Ippet av prosjektet fgrte vi ogsa en kompakt oversikt over alle arbeidstimer i Igpet av prosjektet.
Dette inneholdt en kort beskrivelse av gjgremalene pa en gitt dag. Vi valgte a gjgre dette slik at vi
internt i gruppen hadde en lett tilgjengelig oversikt over prosjektets gang. Det ble lett a fa en oversikt
over prosjektet i retrospekt og danne seg en overordnet oversikt over alt som hadde hent.

3.5.4 Programmeringsfilosofi

Da var oppgave i all hovedsak var basert pa gnsker og tilbakemeldinger fra oppdragsgiver var det ikke
utenkelig at forandringer kunne oppsta i forhold til den opprinnelige planen. Derfor ville
programmering etter fossefall-prinsippet ikke veaere gjennomfgrbart. Vi valgte derfor a basere oss pa
en iterativ prosess, med regelmessige forandringer av systemet, hvis situasjonen krevde dette.
Systemet ville bli testet og modifisert regelmessig, slik at det til enhver tid var mulig a innarbeide nye
krav som matte oppsta. Dette var ogsa spesielt viktig med tanke pa detaljene i

58

flydetekesjonssystemet. Hvis det ble ngdvendig a8 modifisere systemet pa grunn av en uforutsett
problemstilling, var dette na fullt mulig.

| tillegg til dette utarbeidet vi noen generelle retningslinjer for programmering. Under arbeidet tok vi
sikte pa a gjgre koden kortfattet. Vi hadde som mal a veere relativt pragmatiske uten a lempe for mye
pa idealer og "regler" for programmering, a kategorisere koden pa en logisk mate, og a forsgke a
gjore den sa lesbar som mulig.

Vi satt opp noen interne retningslinjer for koding. Disse vektla blant annet:

- Navngivning av funksjoner eller variabler som brukes flere ganger:
Disse navnene skulle vaere sa klare og intuitive som mulig, uten a bli for lange.

- Retningslinjer for kommentarer:
Vi antok at lesere var lesekyndige i de aktuelle sprakene og forklarte kode der det ble ansett
som ngdvendig, men kommenterte ikke "blindt" kode der navngivning og struktur gjorde
virkematen innlysende.

- Hvordan kode skulle formateres og indenteres:
Vi indenterer koden konsekvent med 4 mellomrom per blokk, og brukte ikke TAB-tegnet (\t).
Klammeparenteser ble plassert i henhold til konvensjoner i de forskjellige sprakene, der disse
var tilgjengelige. Whitespace ble ikke brukt kun i blokksammenheng, men ogsa for a gjgre
mindre, logiske skiller i kodelinjer tydeligere.

- Hvordan versjonskontroll skulle brukes:
Forandringer burde committes nar de var "atomiske", frittstdende endringer.

59

4. Implementasjon

| dette kapittelet gir vi en grundig oversikt over de ulike delene av vart system, og hvordan disse
henger sammen. Her er det mange ulike typer kode som kjgrer pa de ulike systemene var Igsning
omfatter, vi kommer ikke til & beskrive alle disse separate delene i detalj. Det er imidlertid flere
hovedelementer som er kritiske for vart system, samt flere mindre funksjoner og liknende som
utfgrer mer avanserte arbeidsoppgaver. Disse delene vil vi gjerne forklare grundigere, da de ikke
ngdvendigvis er forstaelige ved fgrste gyekast, eller at de generelt er viktige a belyse for forstaelse av
systemet som helhet. | slutten av kapitlet finnes en total oversikt over alle deler av systemet, og
hvordan disse er integrert med hverandre.

4.1 Flydeteksjonssystemet

Flydeteksjonssystemet som ble satt opp av den tidligere prosjektgruppen var et relativt omfattende
system vi valgte a ikke sette oss ngye inn i. Likevel gir vi her en kort oversikt over hvordan dette
systemet var utformet, da dette gir kontekst for vart system.

4.1.1 Systemoversikt

En oversikt over flydeteksjonssystemet, samt hvordan dette henger sammen med vart system, ser du
i Figur 4.1: Systemoversikt. Merk at produktet ble integrert med hovedsiden for Hessdalenprosjektet
etter at prosjektet var ferdig. Dette betyr at webserveren ikke lenger er plassert pa frigg.hiof.no.
Dette hadde likevel liten innvirkning pa ytelsen og funksjonaliteten til vart produkt, og er saledes ikke
tatt hensyn til i systembeskrivelsen.

60

Figur 4.1: Systemoversikt

Eh— —
L y < p :
/
()
WM l
Dekoder <> Flydeteksjonssystem Flysensor essdalen AMS
WM Host
. A
1 \
[|
|)
L] |
A
Datapase
L h
A .
Webserver
frigg. hiof.no -,\P‘\
[4
Sluttbruker

Formalet med systemet er at sluttbrukeren kan sammenlikne lysobservasjoner i
lysdeteksjonssystemet med flyobservasjoner fra flydeteksjonssystemet, via vart grensesnitt.

Slik vi ser av figuren, er bade fly- og lysdeteksjonssystemet plassert pa samme maskin, her kalt "VM
Host". Dette er den dedikerte maskinen plassert pa oppdragsgivers kontor, som kjgrer
operativsystemet Linux. Denne maskinen inneholder en virtuell maskin med Windows, derav navnet.

Lysdeteksjonssystemet fungerer uavhengig av flydeteksjonssystemet, og er bare direkte relevant i var
oppgave da en systemsvikt potensielt kan pavirke resten av maskinen - flydeteksjonssystemet.

Flydeteksjonssystemet, slik vi ser av figuren, henter inn data om overflyvninger fra flysensoren
plassert pa Hessdalen Automatic Measurement Station (AMS). Deretter blir disse dataene dekodet
ved hjelp av et program som kjgrer pa den virtuelle maskinen pa VM-host, for sa a bli logget til
databasen. Det skal nevnes at data ikke vil bli umiddelbart lagret til databasen. Dataene for en
pagaende overflyvning vil aggregeres til flyet ikke lenger kan oppdages av sensoren, deretter lagres
alle data for overflyvningen pa en gang.

Deretter kommer vart system inn i bildet, da vi utelukkende arbeider mot databasen. Dette blir
beskrevet senere i kapittel 4, og omfatter bade prosessering pa databasen, webserveren og pa
maskinen til sluttbrukeren.

61

4.1.2 Svakheter

Slik beskrevet i tidligere kapitler var lys- og flydeteksjonssystemene utformet pa en problematisk
mate. For det f@rste var lysdeteksjonssystemet et relativt krevende system, som arbeidet konstant
med tyngre bildeanalyseoppgaver. Eventuelle problemer med dette systemet ville ga direkte utover
flydeteksjonssystemet. Dette var imidlertid noe vi bare matte akseptere.

En annen problemstilling, som ogsa ble beskrevet av den tidligere prosjektgruppen, var dekoderen.
Maskinen som flydeteksjonssystemet kjgrte pa var en Linux maskin, men det var ngdvendig med et
proprietaert dekoderprogramvare for a tolke meldingene sendt ut fra flyene. Dette programmet var
et Windows program, og dermed ble det ngdvendig med en virtuell maskin. Denne Igsningen var ikke
optimal. Desverre var dette noe de ikke kunne kom utenom, da de ikke hadde tilstrekkelig med
dokumentasjon for lage en egen Igsning for a dekode flymeldingene. Dette var likevel en viktig
faktor, da potensielle problemer kunne oppsta i bade dekoderen og den virtuelle maskinen, feil
utenfor var kontroll. Hvis dette skulle feile, ville ikke flydeteksjonssystemet lenger kunne bearbeide
data fra flysensoren, disse ville sa ga tapt for alltid. Denne maskinen ble heller ikke vedlikeholdt
regelmessig. Derfor ville eventuelle feil og svikter i systemet kunne ga uoppdaget over lengre tid.

Disse var alle svakheter vi matte ta hensyn til i var Igsning, for a kunne redusere eventuelle
konsekvenser dette ville fa for vart system. En av de fremste matene vi oppnadde dette pa var a
utelukkende forholde oss til databasen, som var "trygt" driftet pa skolens egen server. Dette, samt
vart valg om a abstrahere oss fra detaljene og virkematene til disse systemene, fgrte til at vi kunne
fokusere pa var Igsning i fgrste rekke.

Til sist skal det nevnes at bare fly som inneholder senderen som flydeteksjonssystemet arbeider mot,
vil bli oppdaget av dette systemet. Alle andre fly vil vaere usynlige for sensoren, og vil saledes ikke
dukke opp i vart system.

4.1.3 Samplingsfrekvens
Vi skal ikke ga i detalj i flydeteksjonssystemet, men en viktig konfigurerbar parameter ma nevnes.

Da vi begynte a hente ut data fra databasen viste det seg raskt at det var betraktelig flere punkter per
overflyvning enn hva vi hadde bruk for i vart system. Det var ogsa problematisk a behandle de
enorme datamengdene. Derfor ble det ngdvendig a gjgre en forandring i flydeteksjonssystemet for a
redusere antall punkter som ble lagret for en overflyvning. Resultatet av dette ble en justerbar
parameter i en konfigurasjonsfil i flydeteksjonssystemet. Pa maskinen som hoster systemet er denne
filen plassert her: /home/hessdalen/flight/flight.cfg

Innholdet i denne filen finner du i Figur 4.2: Konfigurasjonsfil, flydeteksjonssystem (noe informasjon
er obfuskert).

Figur 4.2: Konfigurasjonsfil, flydeteksjonssystem

Configuration file for flight detection.

#

DB_HOST_IP = frigg.hiof.no # MySQL server address
DB_HOST_PORT = 3306 # MySQL server port
DB_NAME = --- # Database name

DB_USER = --- # Database user name

DB PWD = --- # Database user password

#

62

LOG_FILENAME = ./errorFile.log # ./ for Linux, .\ for Windows

#

LAST_POS_TIMEOUT = 60 # Timeout in seconds, Save to db when

flight out of sight for more than x seconds.
#

BASESTATION_IP = 127.0.0.1 # Base station PC's address

BASESTATION_PORT = 30003 # Base station port

#

MAX_POS_REGS_PER_TRACK = 25

#

VERBOSE = @ # Write extra information to errorlLog

Slik vi ser er det neer slutten av filen en innstilling kalt "MAX_P0S_REGS_PER_TRACK". Denne er satt til 25,
den minste mulige verdien stgttet av systemet. Denne verdien forsikrer at en overflyvning aldri vil
inneholde mer enn 25 punkter, slik at mengden data blir begrenset.

Dette pavirker imidlertid bare nye data, da det som allerede er logget til databasen vil beholde den
"opplgsningen" det hadde fra fgr. Derfor ble det ngdvendig a tynne ut databasen selv etter at denne
forandringen hadde blitt implementert i systemet. Dette er foklarti 4.3.1.

Til sist ma ogsa "LAST_POS_TIMEOUT" nevnes. Slik beskrevet i filen er dette tidsintervallet systemet
venter fgr systemet antar at flyet har forsvunnet fra sensoren, og overflyvningen blir konkludert og

sendt til databasen.

4.2 Database

Databasen var en sentral del av var oppgave, da hele var Igsning matte tilpasses formatet dataene
var definert pa. | dette kapittelet gir vi defor en grundig oversikt over hvordan databasen er definert,
samt hvordan datafeltene blir opprettet.

Databasen er delt inn i rader og kolonner. En rad representerer et punkt pa en overflyvning (en
flyobservasjon), med de assosierte dataene. Et fly vil altsd ha en hgyde, en posisjon, en rotasjon, etc.
ved en gitt logging til databasen. Disse datafeltene utgjgr sa kolonnene i databasen, som er den
samme for alle overflyvninger.

Et utsnitt fra databasen finner du i Tabell 4.1: Eksempeldata, ulike fly, her er hver rad et
gyeblikksbilde fra et enkelt fly fanget opp av sensoren i Hessdalen. Flere slike rader/flyobservasjoner
oppgjar sa en overflyvning av et bestemt fly.

63

Tabell 4.1: Eksempeldata, ulike fly

hexident | postime flightid | latpos longpos track | speed | altitude | verticalrate | incam | Regtime

4CC2AD 1398765590 | ICE306 60.86649 | 10.36756 | 103 486 37000 -64 0 2014-
04-29
12:02:10

4CC2AD 1398765606 | ICE306 60.85695 | 10.43888 | 103 487 37000 -64 0 2014-
04-29
12:02:10

4CC2AD 1398765617 | ICE306 60.85085 | 10.48806 | 103 487 37000 64 0 2014-
04-29
12:02:10

47A619 1398765228 | NAX375 | 62.54672 | 11.91427 | 176 450 35975 64 0 2014-
04-29
11:59:10

47A619 1398765239 | NAX375 | 62.52328 | 11.91762 | 176 452 35975 128 0 2014-
04-29
11:59:10

47A619 1398765250 | NAX375 | 62.50108 | 11.92078 | 176 451 36000 64 0 2014-
04-29
11:59:10

Her ser vi altsa et lite utsnitt av to ulike overflyvninger oppdaget av flydeteksjonssystemet. De fgrste
3 radene omhandler et fly med id (hexident) 4CC2AD. Dette er altsa den fysiske adressen pa
senderen som gir ut disse meldingene, og som er plassert inne i flyet. Postime er tidspunktet (i unix
time) da flyet sendte ut denne meldingen, med den relaterte informasjonen. Vi ser her at tre av disse
meldingene forekom med korte mellomrom, det var bare snakk om noen fa sekunder. Deretter ser vi
en ny overflyvning, denne gangen et fly med id 47A619.

Innholdet i de ulike kolonnene er beskrevet i detalj under, med eksempeldata tatt fra den nederste
raden i figuren over.

Hexident: 47A619

- Dette er den fysiske adressen til senderen plassert inne i flyet. Dette er en helt unik
identifikator som ikke vil bli brukt av noen andre fly (med untak av sendere som fysisk flyttes
til andre fly), derfor blir dette indirekte en identifikator pa selve flyet.

- Denne vil alltid besta av 6 heksadesimale tall, og er pakrevd av flydeteksjonssystemet. Hvis
dette datafeltet ikke kan tolkes fra meldingen sendt ut fra flyet, vil meldingen bli forkastet.

- Hexident er saledes ogsa en del av primarngkkelen i databasen, altsa et datafelt som er med
pa a gi en unik identifikator pa en rad i databasen. Dette impliserer ogsa at dette datafeltet
MA spesifiseres (det kan ikke vaere null). Altsa er dette et meget palitelig datafelt.

Postime: 1398765250

- Postime er tidspunktet da flyet sendte ut denne spesifike meldingen med de relaterte
dataene.

- Dette er et heltall som oppgir tidspunktet i unix time, altsa antall sekunder fra klokken
00:00:00 den 1. januar 1970 UTC (/GMT).

64

- Postime er den andre halvdelen av primarngkkelen, ssmmen med hexident. Dette betyr
altsa at tidspunktet for en melding sendt ut av et fly og hexidenten for flyet, sas mmen er unikt
og identifiserende for en rad i databasen.

- Postime er del av primarngkkelen, og er derfor et palitelig datafelt som uten problem kan
brukes i vart system.

Flightid: NAX375

- Dette er en identifikator pa en overflyvning, og fungerer som et slags rutenummer. Lengden
pa flightid varierer fra 3 til 8 tegn, der de f@rste 3 tegnene ofte representerer et flyselskap
slik som "NAX" og "SAS".

- Flightid blir tildelt av flyselskapet som har ansvar for flyet, og det er til en viss grad
identifiserende for en overflyvning.

- Davi begynte a undersgke mulighetene for gruppering av fly viste det seg imidlertid at dette
datafeltet ikke var palitelig nok. Det stgrste problemet med dette datafeltet var at det ikke
var veldefinert pa samme mate som hexident. Flightid kunne nemlig veere en tom tekststreng
(""). Altsa helt uspesifisert. Dette gjorde at denne kolonnen ikke kunne tas i bruk nar det
gjaldt behandling av data, og ville dermed bare bli brukbar nar det gjaldt direkte fremvisning
til sluttbrukeren.

Latpos og Longpos: 62.50108, 11.92078

- Dette var flyets latitude (breddegrad) og longitude (lengdegrad) ved det angitte tidspunktet
(postime).

- Disse datafeltene var helt kritisk for utformingen av var oppgave, da det ville blitt umulig a
plassere ikoner pa kartet hvis det manglet koordinatdata. Derfor matte alle data som ikke
hadde brukbare koordinater forkastes av vart system.

- Merk at databasen stgttet relativt hgy ngyaktighet for disse datafeltene, men at disse
dataene aldri ble spesifisert med hgyere enn fem desimalers ngyaktighet.

- Databasen tillater ikke at disse verdiene blir satt til null, men det var forekomster av
flyttalsverdier meget naere O (j.fr. Track). Verdier som dette filtrerte vi ut i vart system.

Track: 176

- Track, med sitt noe missvisende navn, er flyets orientering (/rotasjon) ut fra 360 grader. 0
grader tilsvarer nord, mens 90 grader er gst. 360 grader blir aldri brukt av systemet, da dette
isteden vil veere 0 grader.

- Dette, i likhet med de neste tre datafeltene, var ikke alltid tilgjengelig, slik at verdien ble satt
til 0 hvis de manglet. Merk at dette overlapper med fly som faktisk hadde en vinkel pa 0
grader.

Speed: 451

- Dette oppgir flyets fart.

- llikhet med track blir dette satt til O hvis disse dataene ikke var tilgjengelige. Merk at dette
ikke er en problemstilling i var oppgave, da et fly aldri vil ha en fart lik 0, da ville flyet ha statt
stille. Dette er ikke mulig utenom tider der flyet star pa bakken (utenfor rekkevidden til
flydeteksjonssensoren).

65

Altitude: 36000

Dette er flyets hgyde, gitt i meter over havet.

Denne verdien ble satt til 0 hvis dataene var utilgjengelige. P4 samme mate som Speed, var
ikke dette en problemstilling. En hgyde lik 0 meter kunne bare forekomme hvis flyet sto pa
bakken ved hav-niva, eller hvis det hadde ngdlandet i havet.

Verticalrate: 64

Verticalrate oppgir flyets stigning, der en positiv verdi betyr at flyet gket i hgyde.

Denne verdien ble satt til 0 hvis dataene ikke var tilgjengelige. Dette var relativt problematisk
a lgse, da en verticalrate pa 0 betyr at flyet flyr rett frem, noe fly gjgr store deler av tiden.
Altsa var det naermest umulig 8 avgjgre om denne verdien var 0 grunnet en feil, eller om
dette var fordi flyet faktisk flgy rett frem.

Incam: 0

Dette er en binzer verdi som angir om flyet var innenfor synsfeltet til kameraet i Hessdalen
eller ikke.
Dette blir bestemt utifra statiske verdier som oppgir et todimensjonalt omrade i Hessdalen.
Omradet er definert ved hjelp av fglgende verdier:

o Longpos mellom 9.8 og 10.5

o Latpos mellom 60.0 og 61.0

o Hgyde blir ikke tatt hensyn til

Regtime: 2014-04-29 11:59:10

Regtime er tidspunktet da data om en overflyvning ble lagret til databasen. Dette blir
generert av funksjonen NOW() i mysql. Dette ble beskreveti 3.3.6.3.

Databasen tar det ndvaerende tidspunktet i systemet og setter dette inn i regtime kolonnen.
Merk at dette er tidspunktet nar henvendelsen til databasen forekom, og ikke nar dataene
faktisk ble innsatt. Dette betyr at selv om databasen kan bruke tid pa a fa bearbeidet
dataene, vil alle forespgrsler som ble sendt samtidig bli tildelt samme regtime-verdi.Dette
betyr at nar flydeteksjonssystemet setter inn data for en overflyvning (dette skjer som en
sammenhengende operasjon etter at hele overflyvningen er ferdig) vil samme regtime verdi
bli gitt til alle radene.

En svakhet ved dette systemet er hvordan det konkluderer en overflyvning. Systemet venter
til et predefinert tidsintervall (se "LAST_POS_TIMEOUT" i Figur 4.2: Konfigurasjonsfil,
flydeteksjonssystem) har passert etter siste logging, og konkluderer overflyvningen nar tiden
I@per ut. Problemet oppstar nar flyet bare har vaert usynlig for sensoren i en kort periode.
Dette vil fgre til at to ulike regtime verdier vil bli produsert for et fly som egentlig er en og
samme overflyvning. Dette er beskreveti 3.3.6.3.

Til sist skal det nevnes at de fleste av disse kolonnene (med unntak av der det motsatte var

spesifisert) blir tillat & veere null (ikke definert) av databasen. Dette kunne ha veert problematisk for

vart system da vart system mest sannsynlig ville ha prgvd a behandle disse som faktiske tall- eller

tekstverdier. Dette viste seg imidlertid 3 ikke vaere et problem, da flydeteksjonssystemet aldri ga

verdien null til et datafelt (det ble heller satt til 0 eller en tom tekststreng).

66

All prosessering av data som foregar i databasen blir beskrevet i 4.3, da det er webserveren som
initierer dette.

4.3 Backend - Kode pa webserveren

Vart system opererer bade pa sluttbrukerens maskin, webserveren, og i databasen (via SQL). | dette
kapittelet tar vi for oss hvordan koden pa webserveren fungerer, samt hvordan denne arbeider mot
databasen. Fgr selve systemkoden forklares skal vi beskrive maint.php, som var et program vi laget
for uttynning av databasen, et tema som har vaert nevnt flere ganger tidligere. For en full oversikt
over hvordan de ulike delene av systemet arbeider samme, og den totale dataflyten, se 4.5.

4.3.1 Databasetynning

| 4.1.3 beskrev vi hvordan flydeteksjonssystemet ble modifisert for a8 unnga at ungdvendige mengder
data ble lagret. Konklusjonen var at systemet inneholdt en konfigurasjonsparameter som ga en gvre
grense for hvor mange punkter som skulle lagres per overflyvning. Denne grensen ble satt til 25,
laveste grense som var mulig i flydeteksjonssystemet. Dette matte sa reflekteres for dataene lagret i
databasen, dette skal vi ta for oss her.

maint.php var et skript vi utviklet for a tynne databasen. Dette skriptet ble kjgrt bare en enkelt gang,
og resultatet var at alle data i databasen ble normalisert, slik at de aldri ville inneholde mer enn 25
rader per overflyvning. For a fa til dette var gruppering av fly ngdvendig, dette er beskreveti 4.3.2.

maint.php fungerte slik at alle data ble hentet fra databasen, gruppert i overflyvninger, og deretter
bearbeidet.

Hvis en overflyvning inneholdt faerre punkter enn den valgte grensen (25) ville hele overflyvningen bli
bevart. Hvis det var flere punkter, ville imidlertid algoritmen bestemme hvilke punkter som skulle
beholdes, og alle andre ble slettet.

For a forklare hvordan skriptet bestemte hvilke punkter som skulle beholdes, tar vi for oss et
eksempel:

Hvis man har 200 rader som man gnsker a beholde 4 av (for enkelhets skyld), tar man 24& = 50. Man

tar vare pa hver femtiende rad, dette blir radene: 1, 50, 100 og 150. Vi ser at radene 150 til 200 blir
helt ignorert. Dette er ikke en tilfredsstillende jevn distribusjon.

., 200 200 . co
Trikset er simpelt, man deler pa antall gnskede rader minus 1, slik: i3 = 66.66. Altsa far man

na med rad 1, 66, 132 og 198 (merk at desimalene tas vekk, i motsetning til 8 runde av tallet). Vi tar
sa bort det siste elementet og heller bestemmer at dette skal vaere rad 200, altsa det helt siste
elementet, alltid. Vi far deretter et utvalg som er slik vi ser i Figur 4.3: Jevnt utvalg (4 valgte punkter
ut fra totalt 200).

67

Figur 4.3: Jevnt utvalg

H_:_:}

Vi far en jevn distribusjon, i motsetning til slik vi ser i Figur 4.4: Ujevnt utvalg.

Figur 4.4: Ujevnt utvalg

(HHM

Vi ser pa den nederste versjonen at det er 4 punkter, med endepunktene, men det er ikke jevnt
distribuert. Var Igsning tok hand om dette slik at det alltid ble generert et konstant antall elementer,
som alltid var jevnt fordelt.

Etter at de gnskede punktene var valgt ut, kunne alle andre punkter slettes. Maten vi utfgrte dette
pa var ikke en direkte forespgrsel mot databasen, da dette potensielt ville fa katastrofale fglger
under programtesting. Det vi heller bestemte oss for a gj@re var at eventuelle rader som skulle
slettes, altsa rader som IKKE ble valgt, produserte en sakalt DELETE-statement. Denne kunne for
eksempel se slik ut:

DELETE FROM flightdata WHERE hexident="0©6A052"AND postime=1370085750;

Vi hentet altsa ut hexident og postime for radene som skulle slettes, da disse var unike og
identifiserende verdier for en rad (se 4.2). Deretter slettet vi radene en av gangen.

Merk at disse utskriftene ble plassert i en sakalt .sgl-fil. Altsa en fil som inneholdt en liste med slike
database-kommandoer, som vi sa kunne kjgre direkte i databasen da filen var ferdig generert.

Etter a ha kjgrt denne filen ble antall rader omtrent halvert fra ca. 600 000 til ca. 300 000. Det vil si at
ca. 300 000 DELETE-statements ble generert. Det viste seg problematisk a faktisk fa kjgrt dette, da
det ville bli en enormt tidskrevende prosess. Vi prgvde fgrst a apne denne i MySQL Workbench, og
kjore den derfra, men dette viste seg a ga ekstremt sakte. Hver enkelt-setning ble overfgrt og
eksekvert en-etter-en. Dette ville ha tatt flere dager. Derfor bestemte vi oss heller for & kjgre dette
ved help av MySQLs command line verktgy. P4 denne maten fikk vi kjgrt .sql-filen pa fa timer.

4.3.2 Gruppering av fly

En annen viktig del av vart system var hvordan vi skulle fa gruppert fly i en overflyvning. Metoden vi
kom frem til var a bruke en sammensetning av databasekolonnene Hexident og Regtime. Hexident
var en unik identifikator for et gitt fly, Regtime var tidspunktet da en overflyvning ble lagret i
databasen. Derfor ville disse kolonnene til samme identifisere en unik overflyvning. Det skal nevnes
at Regtime nesten var tilstrekkelig i seg selv, men da det ikke var utenkelig at to ulike fly kunne fly ut
fra rekkevidden til sensoren pa ngyaktig samme tid, matte vi ogsa bruke Hexident for a skille disse
tilfellene.

68

Grupperingen foregikk slik at uthentingene fra databasen ble sortert pa hexident i fgrsterekke, og
deretter pa regtime. Dette ble altsa behandlet i selve databasen.Vi fikk en forlgpende oversikt over
hvert enkelt unike fly, som videre var sortert i forhold til tidspunktene dette hadde vaert i neerheten
av sensoren. Deretter var det trivielt & gruppere flyene.

Radene ble Igpt igjennom en etter en. Pa grunn av sorteringen ville alle like hexidents komme rett
etter hverandre. Hver nye hexident programmet kom over ville opprette en ny gruppe (for en
overflyvning), og hver nye regtime innenfor den samme hexidenten ville pd samme mate ogsa
opprette en ny gruppe. Regtime-verdier som var innenfor en gitt grense, med tanke pa
ungyaktigheter i systemet, ville bli plassert i samme gruppe.

Hver gang en ny gruppe ble opprettet, ble den gamle gruppen konkludert og konvertert til JSON, som
sa ble sendt til klienten. Formatet pa dataene er beskrevet i 4.3.3.

Ungyaktighet i regtime verdier, slik nevnt over, matte vi ta hensyn til under gruppering. Regtime
kunne potensielt kunne inneholde sma variasjoner for samme overflyvning. Dette ville skje i
situasjoner der lagringen av rader til databasen skjedde pa et tidspunkt der systemklokken tikket
over til et nytt sekund i Igpet av innsettingen, eller flyet var usynlig for sensoren i et lite tidsrom.
Dette var usannsynlig, men det var et hensyn vi valgte a ta for a veere pa den sikre siden. Vi lgste
dette enkelt ved & si at en regtime som var innenfor en predefinert grense (konfigurerbar) ble slatt
sammen, slik at selv punkter med litt varierende regtime ble oppfgrt under samme overflyvning.
Dette gjaldt selvsagt bare punkter med samme hexident.

4.3.3 JSON
Vart system overfgrte data mellom webserveren og klienten i form av JSON, et utsnitt av dette ser du
i Eksempel 4.1: JSON.

Eksempel 4.1: JSON

{"flightdata":[{

"planeID": "478481",

"flightID": "NAX758",

"regtime": 1398781587,

"sightingCount": 2,

"sightings": [

{

"speed": 336,
"altitude": 21250,
"lat": 62.6667,
"lng": 11.5918,
"time": 1398781512,
"rotation": 2,
"ascent": -2048

"speed": 336,
"altitude": 21250,
"lat": 62.6667,
"lng": 11.5918,
"time": 1398781512,
"rotation": 2,
"ascent": -2048
}
1

}1, "flightCount": 1, "sightingCount": 2, "rowCount": 2}

69

Slik vi ser av denne utskriften omhandler det en overflyvning med to punkter for den gitte
overflyvningen (dette er et kraftig forenklet eksempel). | tillegg er generell informasjon om utvalget
presentert som separate datafelter, i slutten av utskriften. Noe som ogsa skal nevnes er at denne
utskriften blant annet inneholder et felt kalt "rotation". Dette er altsa "track" fra databasen, men gitt
et nytt og mer forstaelig navn. Oversikten over dette er gitti 4.3.4.

En detalj som er verdt & nevne er at maten var kode fungerer pa er at JSON-koden blir skrevet ut
kontinuerlig, hver gang en overflyvning er ferdig prosessert. Dette er da i motsetning til a gjgre ferdig
all data, for sa a sende alt samtidig. Ved a sende det i sma deler, forlgpende, Igste vi mange
problemer med de store mengdene data som 13 i databasen, da de ikke ville bli aggregert noe annet
sted enn pa klientmaskinen.

Det skal ogsa nevnes at var kode gjorde det mulig a hente ut en oversikt over utvalget ved a utfgre
en sakalt "probing". Pa denne maten fikk man oversikt over hvor mye data dette utvalget ville
medfgre (uten a utfgre selve datauthentingen), slik at man kunne gjgre om pa utvalget hvis dette
viste seg a bli for mye.

4.3.4 Omdgping av kolonnenavn

De ulike kolonnene i databasen inneholder navn som potensielt kan vaere forvirrende og uforstaelige
for sluttbruker. Disse ble derfor omdgpt til navn som var mer gunstige. En oversikt over disse finner
du her (databasenavn til venstre, vart navn til hgyre):

- hexident => planelD: En unik identifikator pa flyet basert pa senderen som star i flyet.

- postime => time: Tidspunktet for nar senderen sendte ut denne datameldingen.

- flightid => flightID: Nummeret for den aktuelle "flighten", gitt stor bokstav pa ID for & matche
PlanelD.

- latpos => lat: Breddegraden flyet befant seg ved.

- longpos => Ing: Lengdegraden flyet befant seg ved.

- track => rotation: Rotasjonen/orienteringen til flyet, altsa hvilken retning det flgy i.

- speed: Ingen forandring.

- altitude: Ingen forandring.

- verticalrate => ascent: Flyets stigning.

- regtime => UNIX_TIMESTAMP(regtime): beholdt samme navn, men forandret formatet til a
veere et unix timestamp, altsa samme som postime.

4.4 Frontend - Kode pa klientmaskinen

Data blir hentet fra databasen og behandlet pa webserveren, deretter blir det sendt videre til
klientmaskinen. Her utfgres ogsa gjennstdende prosesseringer, samt fremvisning av resultatet for
sluttbruker. 1 4.4.1 gir vi en oversikt over koden som kjgrer pa klientmaskinen, mens 4.4.2 gir en
oversikt over hvordan GUI-et ser ut, og hvordan det brukes.

4.4.1 Code behind

Koden som kjgrer pa klientmaskinen har helt andre forutsetninger enn det som kjgrer pa
webserveren. Mens vi pa webserveren ma ta hensyn til eventuelt stress ved stor pagang, ma vi pa
klientmaskinen ta hensyn til at datamaskinen er kraftig nok til a gi brukeren en responsiv og stabil

70

opplevelse. Pa den annen side er det ikke like kritisk a ta hensyn til store arbeidsoppgaver som
brukeren initierer, da dette bare vil ga utover brukeren selv, i motsetning til at det gar utover
webserveren (og alle andre brukere).

4.4.1.1 Informasjonsvinduer og flyikoner

Dataene som hentes ut ma presenteres for sluttbrukeren pa en gunstig mate. Vi har valgt a gjgre
dette ved a plassere ikoner for alle overflyvninger pa kartet, sammen med alle datapunktene for
overflyvningen hvis bruker gnsker dette. Begge disse kan klikkes pa for a presentere de assosierte
dataene for brukeren i et informasjonsvindu / popup boble. Et eksempel pa dette ser du i Figur 4.5:
Informasjonsvindu.

Figur 4.5: Informasjonsvindu

1.)

NAXT44

Y= B

Tid: 852014 09.21.24

Posisjon:
N E2° 54" T" (B2 8

@ 10°49'35° (10,82

Observasjon:
(28 7 23¢ fra harisont (17700m)

Iy

Merk at dette er et simplifisert informasjonsvindu som ikke inneholder alle data fra databasen. Merk
ogsa de to ikonene gverst. Disse er ekstrafunksjoner som blir beskrevet neermere i 4.4.2.

Dette informasjonsvinduet blir apnet ved a trykke pa enten et fly-ikon, eller ved & trykke pa en "vei-
node" som representerer et datapunkt fra databasen, alle disse danner sa til samme den totale
overflyningen.

Informasjonen som vises frem i dette vinduet blir utformet av en Igsning vi selv laget, som gjgr det er
relativt lett & forandre innholdet i informasjonsvinduet. Dette gjgres ved hjelp av tekst som
inneholder sma kodesnutter. Disse tolkes av vart program nar teksten behandles, med mulighet for 3
blant annet utfgre konverteringer og liknende der dette er relevant. Et eksempel pa en slik
tekststreng (den som genererte informasjonsvinduet i Figur 4.5: Informasjonsvindu) er vist i
Eksempel 4.2: Syntaks for informasjonsvindu. Dette plasseres i egne filer, en for hver type
informasjonsvindu.

71

Eksempel 4.2: Syntaks for informasjonsvindu

<div class="infolWnd">
<p class="header">
♦ {printOrDefault
$F.flightID; (Ingen ID)}
</p>

<p class="controls">
<img src="img/narrow.png" class="actionImage" title="Begrens tidsrom til denne
avgangen" onclick="selectRange({_flightRange $F.sightings})">
<img src="img/gototime.png" class="actionImage" title="Ga til tidspunkt"
onclick="selectInstant({date $S.time; unix})">
</p>

<p>
Tid: {date
$S.time}
</p>

<p>
Posisjon:

{convertPos $S.lat; N; S} ({round $S.lat; 4})

{convertPos $S.1ng; ®; V} ({round $S.1lng; 4})

</p>
<p>

0bservasjon:

{round $S.angle; 2}° fra horisont ({round
$S.altitude; O}m)
</p>
</div>

Uten a gd i for stor detalj ser vi at dette er vanlig HTML, som spesifiserer innholdet i
informasjonsvinduet. Unntaket er linjer som denne:

♦ {printOrDefault
$F.flightID; (Ingen ID)}

Denne linjen spesifiserer fargen pa diamanten gverst til venstre, som er fargen til overflyvningen. Her
brukes ngkkelordene Flight (overflyvning) og Sighting (flyobservasjon) i form av $F og $s. En flight
bestar av flere sightings. Fargen til diamanten blir altsd bestemt av Flight-objektet sin Color,

$F.color.

Deretter ser vi at funksjonen printOrDefault skriver ut flyets FlightID, $F.f1lightID. Hvis denne ikke
er tilgjengelig brukes default verdien, her bestemt til 4 vaere "(Ingen ID)". printOrDefault er altsa
en funksjon i vart program som blir kalt nar navnet blir oppdaget i denne strengen. Flere slike
funksjoner sees i eksempelet over, slik som round, convertPos og date.

Flere datatransformer er definert, og formatteringen pa det som skulle vises i informasjonsvinduene
er lett a utfgre ved a sette opp de gnskede dataene (med henvisninger til Flight eller Sightings,
henholdsvis), samt en referanse til funksjoner/transformer der dette er relevant.

72

4.4.1.2 AMS
Selve basestasjonen, Hessdalen AMS, ble inkludert pa kartet for 3 lettere kunne orientere seg. Dette
erillustrerti Figur 4.6: AMS ikon.

Figur 4.6: AMS ikon

Hessdalen AMS

Posisjon:

(t‘))

Av figuren ser vi AMS ikonet med tilhgrende data. Ved a plassere ut dette ble det blant annet lettere
a tolke dataene fra fly i omradet, slik som hgyde og vinkel mot basestasjon. Pa denne maten ble det
ogsa lettere a se om terreng ville blokkere fri sikt mot flyet, osv.

Dette ikonet fungert ogsa som sentrum for kartet, og spesifiserte standard-utsnittet av kartet som
brukeren sa da websiden ble apnet, igjen for & gjgre det lettere for brukeren 3 orientere seg.

4.4.1.3 Datauthenting

Selve uthentingen fra databasen blir prossesert pa webserveren og konvertert til JSON.
Klientmaskinen tar sa imot disse dataene og plotter disse pa kartet. Dette er en relativt grei
operasjon som ikke krever stgrre utdyping, men likevel er det en viktig detalj ved dette som ma
belyses. Mens data hentes ut skal disse plottes pa kartet. Dette er en relativt krevende prosess, da
det er snakk om store mengder data. Kartet kunne bli uresponsivt, og i vaerste fall kraesjet hele
nettleseren.

Maten vi Igste denne problemstillingen pa var relativt simpel. Mellom hver overflyvning som skulle
plottes pa kartet tok systemet en pause pa ett millisekund. Dette ga systemet tid til & rendere
(/tegne) selve kartet, bearbeide data, og utfgre eventuelle andre arbeidsoppgaver (som ikke ville blitt
behandlet hvis vi ikke tvang vart program til 3 ta en kort pause, da alt av JavaScript blir kjgrt
synkront). Dette gjorde at selve prosessen tok lenger tid, fordi systemet na ventet i et lite gyeblikk
for det gikk videre med neste overflyvning.

Denne tidsforsinkelsen gkte lineaert med antall overflyvninger. Ved for eksempel en maned (ca. 6000
overflyvninger) ville systemet altsa minst ta 6 sekunder lenger. Likevel ville dette i praksis gjgre at
systemet ble raskere, da systemet ikke lenger hang seg. | tillegg ville ikoner bli innfgrt pa kartet litt-
etter-litt, i motsetning til at alt ble fremstilt samtidig etter flere sekunder med uresponsivitet.

73

Det skal ogsa nevnes at fgr selve uthentingen fant sted, ble en liten forespgrsel sendt til databasen
for & se hvor mye data som utvalget ville medfgre. Hvis dette utvalget var helt tomt (og stgrre enn 24
timer) ble brukeren presentert med en dialog som informerte om at systemet kunne ha vaert offline i
den aktuelle perioden. Flytrafikken over Hessdalen sa sjeldent mer enn en time uten trafikk, derfor
var det greit a anta at systemet var offline hvis det gikk lang tid uten flytrafikk. En liste med datoer
der det var kjent at systemet var offline ble ogsa presentert til brukeren i denne situasjonen. Denne
listen er som fglger:

- 19.05.13til 22.05.13
- 10.06.13 til 08.08.13
- 18.08.13til 13.01.14
- 16.01.14til 24.01.14
- 27.01.14til 20.02.14

Brukeren fikk pa samme mate ogsa informasjon om usedvanlig store utvalg, da dette kunne medfgre
kraftig last pa klientmaskinen. Antall overflyvninger som ville bli uthentet ble presentert for
brukeren.

4.4.1.4 Interpolasjon og animasjon

Da vi bestemte oss for at systemet skulle tillate et dynamisk tidsutvalg (et "gyeblikk"), ble det
ngdvendig med interpolasjon. Dette lot oss finne verdier for flyobservasjoner plassert mellom to av
punktene fra databasen. Dette er relativt simpel matematikk hvis det er snakk om linezer
interpolasjon. Vi valgte a ikke ga for en mer avansert form, da lineaer interpolasjon var mer en godt
nok for vart bruksomrade. Et eksempel pa dette ble gitt i 3.2.4.6, vi inkluderer dette eksempelet
igjen, for enkelhets skyld (se Figur 4.7: Interpolasjonsoppgave 2):

Figur 4.7: Interpolasjonsoppgave 2

Hoyde: Hoyde:
31000m 32000m

Hoyde ved
tid = 30?

64 :>

Tid

15 30

Problemstillingen er altsa at vi har to sett med data, og gnsker a finne verdien pa et punkt mellom
disse. Fremgangsmaten er som fglger:

Hvis hgyden gar fra @ veere 31000m til 32000m vil det si at det skjer en forandring pa 1000 meter.
Denne forandringen foregar i et tidsrom pa 64 - 15 = 49 tidsenheter (benevningen er irrelevant).
Tiden der vi gnsker a finne hgyden, 30, er 15 sekunder etter starttidspunktet.

74

Altsa vil vi vite hva hgyden er ut av totalt 1000 meter pa et tidspunkt som er 15 ut av totalt 49
tidsenheter. Dette er triviell matematikk:

X 15

15
MZE:>X_—*1000:306

49
Altsa er flyet i en hgyde av 31000 + 306 meter pa det angitte tidspunktet, 31306 meter.

Denne metoden kan sa brukes for a regne ut alle de ulike datafeltene pa en flyobservasjon plassert
mellom to andre.

Koden som utfgrer denne interpolasjonen er relativt grei, og krever ingen dyptgaende forklaring. En
problemstilling ma imidlertid nevnes, og det er at datafelter, slik beskrevet i 4.2, kan ha blitt satt til 0
grunnet mangel pa informasjon. Dette vil gjgre at interpolasjonen vil gi potensielt misvisende verdier.
Det kan for eksempel se ut som om et fly er pa vei til 3 lande hvis hgyde har blitt satt til 0, og flyet
sakte beveger seg mot denne verdien (uten at dette blir reflektert i verdien som angir flyets stigning).
Dette var det desverre lite a gjgre med, uten a "pusse" pa dataverdiene. Dette kunne ha gitt
brukeren et feil bilde av overflyvningen. Derfor var det bedre a la feildataene veere som de var.
Brukeren hadde ogsa tilgang til alle punktene pa overflyvningen, derfor var det enkelt for brukeren a
selv verifisere dataene interpolasjonen var basert pa.

Interpolasjon ble kontrollert av en tidslinje som brukere selv kunne velge ut et "gyeblikk" fra. Dette
utfgrte sa de ngdvendige interpolasjonene og flyttet flyikonene til de nye koordinatene (med
interpolerte dataverdier). Et eksempel pa denne tidslinjen ser du pa Figur 4.8: Tidsmanipulator.

Figur 4.8: Tidsmanipulator

E]

Auir

Roros

29 april 2014 18:28:43

Slik vi ser pa figuren er et gyeblikk (29. april 2014 18:28:43) valgt pa tidslinjen. Ingen fly er synlige pa
denne delen av kartet i dette "@gyeblikket". Alle overflyvninger vil bli interpolert pa bakgrunn av dette
tidspunktet, og flyikonene vil bli plassert pa de korrekte koordinatene pa kartet, med nye, utregnede
verdier. Altsa ville pavirkning av tidslinjen direkte flytte ikonene pa kartet. Det vil si at animasjon
enkelt kunne oppnas ved a kontinuerlig flytte tidslinjen med jevne mellomrom. Det viste seg

75

imidlertid at animasjon ikke var av stor interesse for oppdragsgiver. Derfor bestemte vi oss for a ga
bort fra dette, for a heller prioritere andre aspekter av prosjektet.

4.4.1.5 Vinkel til basestasjon

Det ble spesifikt etterspurt av arbeidsgiver at systemet viste vinkelen til basestasjonen, hvis dette
viste seg a veere mulig. Vinkelen det er snakk om er altsa vinkelen som man ma se "opp" for a se flyet
nar man star ved Hessdalen AMS, slik illustrert i Figur 4.9: AMS vinkel.

Figur 4.9: AMS vinkel

Hessdalen AMS

//

Vi ser at dette er vinkelen ut fra basestasjonen og opp mot flyet. Slik illustrert (sterkt overdrevet i
dette bildet) vil kurvaturen til jordkloden pavirke denne utregningen. Dette er pa grunn av at flyets
hgyde selvsagt er oppgit rett ned mot bakken (og ikke til den rgde grunnlinjen vist i figuren). Det har
seg heldigvis slik at det er snakk om et relativt lite omrade, som gjgr det mulig a behandle
strekningen langs bakken som en rett linje. Pa denne maten kan vinkelen regnes ut med vanlig
trigonometri som tar i bruk hgydeforskjellen mellom AMS-en og flyet, samt avstanden mellom dem (i
en tilneermet rett linje langs jordoverflaten).

Hgydeforskjellen er lett a regne ut, da flyets hgyde blir sendt ut av senderen i flyet, og hgyden til
basestasjonen (i meter over havet) lett kan finnes ved hjelp av atlas og liknende (AMS-en er ogsa
plassert omtrent i bakkehgyde).

Problemet er a finne avstanden mellom flyet og basestasjonen i meter, da de eneste verdiene vi vet
er koordinatene til begge. Hessdalen AMS er plassert vet 62°49°17” nord, 11°12'7” @st. Flyets
koordinater blir sendt ut av flyets sender. Disse koordinatene er oppgitti "grader", og sier oss ingen
ting om avstanden mellom punktene i meter. En annen problemstilling er igjen jordens kurvatur.

Maten denne avstanden sa regnes ut pa er ved hjelp av en formel som tar dette med i betraktning og
produserer en avstand i meter som vi kan bruke direkte i var Igsning. Dette er den sakalte
"haversine"-formelen som produserer "storsirkel" avstanden mellom to geografiske punkter
(Movable Type Ltd, 2014). Denne formelen finner du i Formel 4.1: Haversine.

76

Formel 4.1: Haversine

A AN
a = sin? (74)) + cos(p1) = cos(¢2) * sin? (—)

2
¢ =2 *atan2(va, V1 —a)
d=R=xc

Der @ er breddegrad, A er lengdegrad og R er jordens radius (6.371 km). Merk at vinklene som blir
brukt i disse funksjonene ma vaere oppgitt i radianer, samt at denne funksjonen regner ut avstanden i
kilometer, der vi bruker meter i vart program.

Etter 3 ha regnet ut denne vinkelen settes denne sa inn som et eget datafelt for en overflyvning.

Denne utregningen kunne ogsa ha vaert utfgrt pa webserveren, men vi valgte a ikke overlate mer
prosessering til denne enn den allerede hadde, slik at klientmaskinen matte ta pa seg dette arbeidet.

4.4.1.6 Heatmap

Pa grunn av svakheter i flydeteksjonssystemet vist det seg ngdvendig a gi brukeren en mulighet for a
se sannsynligheten for fly, selv om systemet ikke hadde gjort noen registreringer i det aktuelle
omradet. Dette implementerte vi som en heatmap, altsa et slags filter som ble lagt over kartet, som
viste intensiteten av fly ved help av farger. Et eksempel pa en heatmap, og data dette ble basert p3,
ser du i Figur 4.10: Heatmap med kilde.

77

Figur 4.10: Heatmap med kilde

-

s
N

@vre n/eral .

y|

Tryasil

ggdal

Levdglseyvi

Slik vi ser av denne figuren angir heatmap-en en overordnet oversikt over hvor det var stgrst

forekomster av fly. Ved hjelp av dette er det mulig & ansla sannsynligheten for at et fly passerte et
omrade, selv hvis ingen data var logget pa det aktuelle tidspunktet. Dette gjgr ogsa at det blir lettere
a fremstille store mengder data. Grunnen til dette er at genereringen og tegningen av en heatmap er
betraktelig mindre krevende for datamaskinen, enn det er a tegne opp et ikon for alle observasjoner,
samt linjer som knytter disse sammen.

Da brukeren selv bestemmer tidsintervallet som heatmap-en skal baseres p3, vil dette ogsa si at
brukeren selv har kontroll pa hvor spesifikt det blir. Stgrre tidsrom gir selvsagt mer generell oversikt,
men dette vil ogsa si at det blir vanskeligere a ta en avgjgrelse pa bakgrunnen av resultatene. Det
beste var altsa a gi brukeren full kontroll pa dette.

78

4.4.2 Webside GUI og funksjoner

Sluttproduktet er en webside med et kart som viser flytrafikken i et gitt tidsrom. Det skal vaere mulig
for brukeren 3 sette et start- og sluttidspunkt, og ikoner skal plasseres ut pa kartet for a representere
et fly pa et gitt tidspunkt. Disse ikonene skal kunne klikkes pa for 3 gi mer utfyllende informasjon (alt
dette hentes fra databasen).

Overflyvninger blir presentert som en linje med punkter, der hvert punkt er en rad fra databasen. Et
flyikon blir brukt for @ representere et valgt "@yeblikk" i tid. Systemet er vist i Figur 4.11:
Websideelementer.

Figur 4.11: Websideelementer

Orkanger Heimdal

Velg

Siste 30 min @

Siste time

Siste 2 timer
Tidsrom: 1 time
2
i | Vis heatmap

‘S‘ Vis stier
E\ Vis noder @

<4 Behold infovinduer

Harjedalen NV

farjedalen V

T A R 4., U S PO | = SRR SCy ISP S

Alvdalen N

[
Kartdata €2014 Google Bruksvilkér Rapportéren feil med kartet

? 1552014 16:58:16

1. Kartet kan navigeres ved hjelp av verktgyene gverst til venstre pa kartet, eller ved a klikke og
dra pa kartet.

2. Pakartet er det plassert et rgdt rektangel som representerer rekkevidden til malestasjonen.
Den rgdstriplede linjen er en del av dette rektangelet. Denne begrenser datautvalget, slik at
man aldri vil finne data for omrader utenfor. Grensen er satt til de stgrste og minste verdiene
av lengde- og breddegrader registrert i systemet ved tidspunktet for vart prosjekt. Grensene
kan forandres ved hjelp av en konfigurasjonsfil, hvis det gnskes & begrense utvalget
ytterligere.

3. Det gnskede tidsrommet for datauthenting kan bestemmes ved hjelp av dette verktgyet. Her
kan dato og klokkeslett bestemmes for start- og slutt tidspunkt for datautvalget. Data hentes
automatisk for den siste halvtimen nar websiden apnes for fgrste gang (eller fra forrige
utvalg hvis dette ble spesifisert ved et tidligere besgk). Det er ogsa mulig a velge mellom
ulike pre-definerte tidsintervaller. Siste halvtime, siste time eller siste 2 timer.

Nar det gjelder de spesifike tidsutvelgerne benytter disse en kalender slik vist i Figur 4.12:
Tidsvelger. Pilene gverst brukes for @ bestemme maned (og ar). Dagen i dag er alltid markert,

79

og aktuell dag for datauthentingen velges ved a trykke pa dagen i kalenderen. Tiden
bestemmes ved hjelp av to "slidere". Nar gnsket tidspunkt er valgt kan dialogen bare lukkes
ved "lukk" knappen, da selve tekstfeltet alltid holdes oppdatert med verdiene valgt i vinduet.
Tekstfeltet som datostrengen plasseres i kan ogsa editeres direkte.

Brukeren far tilbakemelding hvis et stort antall data blir uthentet, hvis brukeren gnsker a
avbryte operasjonen. Hvis det valgte utvalget er tomt og st@grre enn 24 timer, kan dette tyde
pa at systemet var nede. Brukeren blir gitt et informasjonsvindu som blant annet inneholder
data om tidspunkter der det er kjent at systemet var nede.

Figur 4.12: Tidsvelger

o Mai 2014 o

ma ti on to fr lg s@

1 2 3 4

5] 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25
20 27 28 29 30 31

Tid 13:02
Time
Minutt

Lukk

,.
=
Ola

4. Den lange "slideren" nederst til venstre er tidslinjen. Denne bestemmer "gyeblikket" for
dataene som vises pa kartet. Dette brukes for & bestemme hvor de interpolerte flyikonene
plasseres. En forklaring pa tidslinjen blir gitt i programmet ved & trykke pa spgrsmalstegnet.

5. Her kan man se bade gyeblikksbildet for et fly, alle punktene fra databasen ("punkt-prgver"
for overflyvningen) og linjene som knytter disse samme. Flyikonet representerer som sagt
den ngyaktige plasseringen for flyet pa gyeblikket valgt pa tidslinjen. De andre punktene er
verdiene hentet fra databasen, og viser sammen med den tilknyttende linjen hvilken bane
flyet folger.

Hvis man trykket pa enten et flyikon eller et punkt pa linjen, vil et informasjonsvindu dukke
opp. Dette viser de tilhgrende dataverdiene for dette punktet. Man kan se informasjon som
posisjon, hgyde, fart osv. for hver observasjon. Verdiene brukt for flyikonet er interpolert

80

basert pa de naarmeste punktene. Navnet pa flyet, som star gverst i informasjonsvinduet, er
rutenummeret tildelt av flyselskapet. Dette er IKKE adressen til den fysiske senderen plassert
inne i flyet (j.fr. 4.2, hexident). I tillegg inneholder dette vinduet to funksjoner for a gjgre

navigering pa tidslinjen enklere. Det er to ikoner, der det ene begrenser det valgte
tidsrommet til 3 bare gjelde for perioden for den valgte overflyvningen. Det andre ikonet
hopper i tid (pa tidslinjen) til tidspunktet for det valgte punktet (flyobservasjonen).

6. Dette sender-liknende ikonet representerer malestasjonen i Hessdalen. Dette star pa en fast
posisjon pa kartet. Dette inneholder ogsa et enkelt informasjonsvindu med data om
malestasjonen.

7. Knappene plassert i denne boksen gir brukeren mulighet til 3 pavirke hva som vises pa kartet.
Fra toppen og nedover er disse: Heatmap, Stier, Noder og Sticky.

Heatmap bytter ut ikonene pa kartet med en "heatmap", altsa en generell oversikt over
intensiteten av flytrafikk. Pa denne maten far man en mer generell oversikt over store
mengder data. Dette kan for eksempel brukes for a gi en generell oversikt over
sannsynligheten for fly, basert pa hvor de fleste flyene har passert tidligere. Merk at
heatmap-en er basert pa de diskrete "punkt-prgve"-verdiene fra databasen, i motsetning til
en kontinuerlig linje med punkter. Dette vil fgre til omrader med grgnne enkelt-punkter uten
tilknytning. Dette betyr bare at det er for lite data til 8 produsere et bruktbart heatmap i
omradet, derfor kan disse bare oversees. En forklaring pa heatmap-en vises ved at man
trykker pa spgrsmalstegnet i programmet.

Stier bestemmer om stien som flyet fulgte skal vises pa kartet. Dette gj@res ved a tegne en
strek mellom nodene fra databasen.

Noder er de sma rundingene pa kartet. Disse representerer radene med data fra databasen,
og kan trykkes pa for a fa detaljert informasjon om flyene. Flyikonene pa kartet baserer sine
verdier pa interpolasjon mellom slike noder.

Sticky gj@r at informasjonsvinduer for flere ikoner kan apnes samtidig. Pa denne maten blir
det mulig a se data for flere fly samtidig, slik at disse lett kan sammenliknes opp mot
hverandre.

4.5 Systemoversikt

Etter 4 ha forklart de ulike systemene i de foregadende kapitlene vil den totale systemoversikten
beskrives her, hovedsakelig hvor de ulike filene som utgjgr systemet eksekverer, og hvordan de
forholder seg til hverandre. For sammenhengen mellom hovedkomponentene i vart system, og
hvordan dette henger sammen med fly- og lysdeteksjonssystemene, se 4.1.1.

81

4.5.1 Hovedtrekk
Komponentene som vart system omfatter er vist i Figur 4.13: Vart system.

Figur 4.13: Vart system

—
"‘-—J
F

S
ey

Database Websarver Klientmaskin
(pa frigg.hiof.no)

-
-

- .

i
U
N

(pa frigg.hiof.no)

747 2

Sluttbruker

Komponentene som vart system omfatter er databasen og webserveren pa frigg, samt
klientmaskinen hos sluttbruker. Data blir overfgrt mellom disse tre systemene, og undergar ulike
typer prosessering langs veien. Merk at webserveren i ettertid ble integrert med websiden for
Hessdalen, og flyttet til hessdalen.org. Dette hadde ingen innvirkning pa ytelse eller liknende, men
forekom etter at Igsningen og rapporten var ferdig utarbeidet. Derfor tar systemforklaringen
utgangspunkt i at webserveren er plassert pa frigg.hiof.no.

Alt begynner med at brukeren gar inn pa var side og velger et tidsintervall for uthentingen. All
flytrafikk innenfor dette tidsintervallet blir hentet ut. Forespgrselen skjer via en AJAX forespgrsel
tilbake til webserveren (uten dette vil ikke brukeren fa kontakt tilbake til webserveren etter at siden
har blitt lastet).

Forespgrselen blir behandlet av webserveren, som kontakter databasen (som forelgpig er plassert pa
samme fysiske servernettverk). Dette skjer ved hjelp av en SQL forespgrsel, som blant annet
begrenser hvilke tidspunkter som er interessante under uthentingen. Bare data med "postime"-
verdier (tidspunktet da flyet sendte ut meldingen) innenfor grensene satt av brukeren vil bli hentet
ut. Webserveren inneholder brukerinformasjon om databasen, slik at den far tilgang til dataene.
Disse blir ikke gjort tilgjengelige for sluttbruker, og blir heller ikke pakrevd.

| tillegg til begrensning pa tidspunkt, blir ogsa koordinater utenfor det aktuelle omradet filtrert bort.
Dette skjer ved hjelp av statiske parameter, som kan konfigureres. Databasen sorterer deretter
dataene, fgrst pa hexident og deretter pa regtime (samt postime helt til sist) fgr det sendes tilbake til
webserveren.

Webserveren mottar disse dataene, som sa blir gruppert. Grupperingen baserer seg pa hexident og
regtime, og produserer "overflyvning"-objekter, som inneholder datafelter for alle flyobservasjonene
overflyvningen omfatter. Svaret pa AJAX forespgrselen blir deretter sendt tilbake til klienten, altsa
disse dataene. Dataene er pakket inn i JSON format, som kontinuerlig sendes til klienten under
uthentingen fra databasen. Hver gang et overflyvningsobjekt er klart, blir dette sendt til klienten
umiddelbart. Webserveren har derfor frie hender for a behandle neste overflyvning.

82

Klientmaskinen mottar disse dataene og begynner a plotte disse pa kartet forlgpende, med sma
pauser innimellom hver overflyvning, slik at systemet klarer a handtere arbeidsmengden. Nar
klienten er ferdig med a plotte alle verdiene, er dataoverfgringen komplett, og brukeren har na
mottat data for det valgte tidsrommet. Deretter kan brukeren ved hjelp av diverse verktgy begynne a
analysere dette.

Det ma til sist nevnes at heatmap-en som brukeren kan velge a vise, er basert pa det faktiske
datautvalget. Det blir ikke utfgrt et separat utvalg for dette.

4.5.2 Filstruktur

Vart system bestar av flere filer som kjgrer pa to ulike systemer. PHP-filer kjgrer pa webserveren, og
de andre blir kjgrt pa klientmaskinen. Da produktet skulle legges over pa webserveren til
Hessdalenprosjektet, ble det klart at filene skulle ha bade en engelsk og en norsk versjon. Derfor
finnes det et duplikat av disse filene med engelsk tekst.

Filstrukturen var fortsatt den samme, derfor er ikke dette inkludert i forklaringen under. En oversikt
over filene finner du her:

Hovedmappe:

config.db.inc.php

config.inc.php

config.js

config_eng.js

Diverse konfigurasjonsfiler. .php-filene angir innstillinger for backend (behandling av data,
osv.), mens .js-filene angir forskjellige innstillinger som brukes i grensesnittet og
klientapplikasjonen.

e data.php
Aksesspunktet for databasen, denne henter ut informasjonen og behandler denne for a
gruppere fly og fjerne overflgdig data.

e index.html
e index_eng.html
Definerer HTML-struktur og binder applikasjonen sammen.

e /css
O main.css
Angir stilinformasjon.

e /data
o infownd_ams.html

o infownd_ams_eng.html
o infownd_plane.html
o infownd_plane_eng.html
Angir “mal” for informasjonsvinduene som vises ved klikk pa kartikoner.
e [img

o ams.png
o circle.png

83

O O O O O O 0 O O

e Jis

circle_green.png

circle_red.png

date.png

gototime.png

menu_heatmap.png
menu_node.png

menu_paths.png

menu_pin.png

narrow.png

Bildefiler som brukes i applikasjonen.

Logikk pa klientsiden. Javascriptkoden ligger i hovedsak her.

O
O

data.js
data_eng.js
Logikk for databehandling og —overfgring

icons.js
Behandler bildefiler og ikoner

infownd.js
Behandler informasjonsvinduer

map.js
Oppsett og vedlikehold av kartet og relaterte objekter

settings.js
Grensesnitt for innstillinger

template.js
template_eng.js
Laster inn og fyller ut maler for informasjonsvinduer. Malene ligger i data/-mappen.

template-funcs.js

Inneholder funksjoner som kan kjgres fgr informasjon settes inn i
informasjonsvinduer. Dette inkluderer for eksempel formatering av tidspunkter og
koordinater.

ui.js
ui_eng.js

Inneholder logikken bak grensesnittet, event handlers og liknende

util.js
Inneholder diverse funksjoner som har allmen nytteverdi og ikke passer inn noe
annet sted.

84

e J/lib
Javascript-biblioteker fra andre kilder
o date.js
Nyttefunksjoner for enklere behandling av datoer og tidspunkter

o seedrandom.js
PRNG-implementasjon

o /lib/timepicker
GUl-objekter for enkelt utvalg av datoer og tidspunkter
= timepicker.css
= timepicker.js

index.html er dokumentet som kjgrer pa klientmaskinen, og binder websiden sammen. Her blir alle
elementene pa websiden spesifisert, og alle relevante skript blir inkludert. Stilarket som bestemmer
utseende for websiden ligger i main.css.

data.php er backend-skriptet som kjgrer pa serveren, med ansvar for a8 hente ut data fra databasen
og overfgre dette til klienten. | denne filen kjgres SQL-spgrringen mot databasen, som henter ut de
relevante dataene, behandler dem, og konverterer dem til JSON. Merk at data.php ogsa utfgrer en
tynning pa dataene fgr de sendes videre til klientmaskinen. Grensen er satt til maksimalt 10
observasjoner per overflyvning, men dette er konfigurerbart (opp til 25 observasjoner).

Interaksjonen mellom index.html og data.php foregar i data.js. Dette skriptet sgrger for a sende
forespgrselen til data.php, og tar imot dataene (JSON) og konverterer dem til objekter som systemet
tar i bruk. Denne filen inneholder ogsa funksjonalitet for blant annet interpolering.

map.js inneholder logikken for selve tegningen av Google Maps -kartet. Her opprettes selve kartet og
alle visuelle elementer som tegnes pa det. ui.js inneholder tilsvarende logikk for resten av websiden,
slik som dato-velgeren.

Konfigurasjon av systemet befinner seg i tre ulike filer: config.db.inc.php, config.inc.php og config.js.

config.js inneholder konfigurasjonen for klientmaskinen. Her bestemmes blant annet standard
posisjonering av kartet, avgrensning av aktuelt omrade pa kartet og innstillinger for heatmap og
dato-velgeren. | tillegg defineres enkelte andre variabler som kan vaere interessante a “tweake”.

config.inc.php inneholder konfigurasjonen for backend-skriptet. Her settes eventuelle statiske
grenser for dataene som hentes fra databasen, slik som absolutt geografisk avgrensning. Merk at
dette tilsvarer den geografiske avgrensningen angitt i config.js (som kun er grafisk). Hvis disse
verdiene forandres, ma dette forandres i begge filer, slik at utvalget stemmer overens med den
fysiske grensen tegnet pa kartet. | tillegg til dette inneholder konfigurasjonsfilen
"MAX_REGTIME_DIFF" og "RESOLUTION_DEFAULT", som angir hvordan fly skal grupperes og hvor
detaljert informasjon som sendes til klienten skal vaere.

config.db.inc.php inneholder databaseinformasjonen, som bestemmer hvilken database som kobles
til for & hente dataene samt brukernavn og passord som skal benyttes ved tilkobling.

| tillegg til disse inneholder programmet flere javaskriptfiler som handterer mindre komponenter i
systemet.

85

infownd.js star for genereringen av informasjonsvinduer, som sa knyttes til flyikon-objekter.

template.js handterer genereringen av selve informasjonsvinduteksten. Dette behandler filer for
hver type informasjonsvindu plassert i data-mappen. Disse filene inneholder spesielle kodesnutter pa
vart eget enkle makroformat, som gjgr det enkelt a prosessere data og liknende, fgr det ferdige
informasjonsvinduet blir presentert for brukeren. Funksjonene som kan brukes i disse malene
defineres i template-funcs.js.

settings.js er et interface som gjgr det lettere a behandle diverse innstillinger i programmet.

icons.js tilgjengeliggjor de ulike ikonene i programmet, bade vektorgrafikk spesifisert med path, og
faktiske ikon-filer plassert i img-mappen.

Til sist har vi util.js som inneholder diverse enkeltstaende funksjoner, som a regne ut vinkelen
mellom basestasjonen og et fly, eller konvertering fra HSL til RGB-farger.

lib-mappen inneholder ulike eksterne biblioteker vi har tatt i bruk i vart produkt.

| tillegg til disse filene brukte vi en fil, maint.php, for tynningen av databasen. Denne hentet ut data
fra databasen og produserte en SQL-fil for data som skulle slettes. Selve logikken som ble brukt er
meget liknende tynning-logikken i data.php.

86

5. Testing og evaluering

Produktet gjennomgikk flere runder med testing internt, i flere ulike miljger, noe som fulgte naturlig
av at vi arbeidet iterativt (se 3.5.4). Etter hver store forandring prgvde alle gruppemedlemmer a
finne feil og mangler i produktet. Det skal ogsa nevnes at gruppemedlemmer til tider var distansiert
fra utviklingen av produktet, grunnet arbeid pa denne rapporten. Dette fikk en positiv effekt pa
testingen, da det ble lettere a fa en "naturlig" respons fra hvordan det fungerte.

Det ble ogsa holdt en demo for oppdragsgiver og veileder naer slutten av prosjektet. Pa denne kom et
viktig poeng frem, at det ikke var helt intuitivt hvordan de ulike elementene fungerte. Spesielt
heatmap. Dette fgrte til en direkte implementasjon av et informasjonsvindu for sluttbruker. Dette gir
brukeren en generell oversikt over produktet.

Det ferdige produktet var stabilt og fungerte tilfredstillende. Problemer med datamengder og
liknende ble Igst med diverse grep, som gjorde at opplevelsen for sluttbruker var responsivt og
relativt raskt. Et problem som imidlertid sto igjen, og som vi ikke fikk Igst, var at produktet ikke
fungerte i Internet Eplorer. Dette ble klart relativt sent i prosjektet, og var derfor noe vi ikke fikk tid
til & Igse. Produktet fungerte imidlertid som forventet i bade Google Chrome og Mozilla Firefox.
Brukere av Internet Explorer far en beskjed om at produktet ikke vil fungere for dem.

87

6. Diskusjon

| dette kapittelet diskuterer vi resultatene vi oppnadde, med fokus pa malet, kravspesifikasjonene til
produktet og arbeidsmetoden spesifiserti 1.4.

6.1 Oppnadde mal

Vart produkt har gjort det lettere a avklare om et detektert lysfenomen var et forbipasserende fly
eller ikke. Dette blir oppnadd ved a hente ut data fra databasen, og presentere dette pa en webside.
Noen av dataene var mangelfulle, og det var hele perioder der flydeteksjonssystemet hadde vaert ute
av drift. Det var dessverre noe vi ikke kunne Igse.

Samplingsfrekvensen til systemet har ogsa meget hgy da vi begynte pa vart prosjekt, som fgrte til
ungdvendig store mengder data i databasen. Vi kunne ha latt vaere a forandre pa dette, men da ville
hele vart system blitt mer uresponsivt. Vi fikk kuttet ned betraktelig pa datamengden, og la til
funksjonalitet for a tynne det ytterligere fgr det ble sendt til klientmaskinen. Hvis vi hadde hatt bedre
tid, kunne vi prgvd a forbedre databasen, fatt ryddet opp i den, men dette valgte vi a ikke gjgre.
Fokuset vart 13 pa a utvikle vart produkt, og bare forholde oss til databasen og flydeteksjonssystemet
slik dette var satt opp. Dette med unntak av uttynningen, som viste seg a vaere helt ngdvendig.

Vi har gjort det lettvint 3 hente ut data fra ngyaktige tidsintervaller. Systemet henter automatisk inn
data fra de siste 30 minuttene nar websiden blir lastet. Knapper for & hente ut data fra predefinerte
intervaller er pa plass: siste 30 minutter, siste time og siste 2 timer. Ngyaktige tidspunkt, ned til
minuttet, kan kontrolleres ved help av en kalender og "slidere".

Det var desverre tidspunkter der systemet hadde vaert ute av drift, slik at det ikke fantes data. Slik
nevnt over var det ikke noe a gjgre med dette. Derfor valgte vi a heller a informere brukeren om
problemet. Hvis brukeren hentet ut data fra et tomt tidsrom pa over 24 timer ble brukeren
presentert en dialog med informasjon om datoer der flydeteksjonssystemet hadde veert ute av drift.

Data for ngyaktige tidspunkter kan hentes ut ved hjelp av en "slider" nederst pa websiden. Denne gir
interpolerte dataverdier for tidspunkter utenfor de som databasen dekker. Vi var forngyd med
tidsutvelgeren var, og selv om vi hadde hatt bedre tid, er det ikke noe vi hadde gjort annerledes i
denne delen av oppgaven.

Dataene presentert av vart produkt er alle de aktuelle datafeltene fra databasen, men det var ogsa
data som var av liten interesse for arbeidsgiver. Vi lot veere d hente ut og presentere disse dataene.
De dataene vi valgte & hente ut blir vist pa kartet. Noe blir representert ved plassering og orientering
av flyikonene, andre data kan aksesseres ved a trykke pa et flyikon, som apner en tekstboks. Vi kunne
ha valgt a legge til avanserte analysemuligheter, grafer og slikt, men bestemte oss for a ikke gjgre
dette. Grunnen til dette var at nettsiden hadde blitt mer rotete og mindre brukervennlig. Det hadde
ogsa tatt lang tid @ implementere. Dette, i forhold til hvor lite interessant dette var for oppdragsgiver,
ferte til at vi ikke implementerte slik funksjonalitet. Unntaket er en heatmap, som tilfgrer en slags
oversikt over sannsynlighet for fly.

88

Vi er forngyde med kartikonene. De ser bra ut med ulike mengder data. Det kan bli litt rotete hvis
man velger et for stort tidsrom, men dette er uunngaelig da vi gnsker a gi brukeren sa mye frihet som
mulig.

Ikonene pa kartet inkluderer flyikoner, noder, stier og et ikon for Hessdalen AMS. Flyikonene er
produsert ved hjelp av vektorgrafikk, og utarbeidet av oss. Dette representerer det gyeblikket valgt
pa tidslinjen, og har verdier interpolert ved hjelp av naerliggende noder. Hessdalen AMS
representerer malestasjonen som befinner seg i Hessdalen. Den er formet som en svart sender pa
kartet. Nodene er sma hvite sirkler med svart kantlinje. Dette er data om flyobservasjoner fra
databasen. Brukeren kan trykke pa alle disse ikonene og fa opp en tekstboks med informasjon, som
forklarti tidligere i dette kapitlet. Stiene tegnes mellom nodene, og viser banen flyet har tatt. Dette
gjor det lettere a vite hvilke ikoner som hgrer sammen, dette forsterkes av at flyikonene og stiene
har samme farge for ett fly.

Brukeren kan ogsa velge a feste informasjonsboksene pa skjermen, slik at de ikke lukkes ved a trykke
andre steder. Dette gjgr det lettere a sammenlikne data mellom to ulike ikoner. Sticky-modus
aktiveres ved a trykke pa den korresponderende knappen pa verktgylinjen. Vi har valgt a gjgre det pa
denne maten fordi det ser designmessig bra ut, og ga en ryddig mate a representere store mengder
data. Hadde vi hatt bedre tid, kunne vi ha prgvd a forbedre ulike designaspekter, men vi er forngyd
med resultatet vi kom frem til.

Slik nevnt over inkluderer ogsa programmet muligheter for a gi en oversikt over intensiteten av
flytrafikk i en periode. Dette gjgres ved at et farget "filter" legges over kartet, som viser intensiteten
pa en skala fra blatt til rgdt. Denne baseres pa de diskrete datapunktene ("stikk-prgver") fra
databasen, noe som fgrer til omrader med grgnne punkter uten tilknytting. Dette betyr at det er for
lite data i omradet til & gi en god oversikt. Grunnen til at dette er at vi tok i bruk et eksternt bibliotek
for var heatmap, og denne aksepterte ikke linjer, bare enkeltpunkter. Problemet kunne vaert Igst ved
a interpolert flere punkter fgr heatmap-en ble tegnet, men vi valgte a ikke gjgre dette. Det hadde
fert til ungdvendige mengder ekstraprosessering, og hadde ikke tilfgrt mye. Heatmap-en ser
akseptabel ut med stgrre mengder data, det er bare ved minimale mengder at slike resultater
oppstar, og disse kan bare bli sett bort fra.

6.2 Levert produkt

Hovedproduktet er en webside som presenterer dataene fra databasen, ved hjelp av et interaktivt
kart. Man kan ogsa velge ut data i et bestemt tidsrom, ved hjelp av et sett med tidsvelgere. Dataene
vises ved hjelp av flyikoner, noder og tekstbokser. Man kan ogsa "feste"
tekstboksene/informasjonsvinduene ved help av en "sticky"-knapp, som gjgr at de ikke forsvinner
nar andre informasjonsvinduer apnes. Dette gjgr det lettere @ sammenlikne data. For a vise
intensiteten av flytrafikk implementerte vi et heatmap. Jo mer flytrafikk det er i et omrade, jo rgdere
blir fargen (pa en skala fra blatt til r@dt). Vi valgte a gjgre det pa denne maten, bade fordi det sa
designmessig bra ut, og ga brukeren en god oversikt over store mengder data. Bade vi og
oppdragsgiver var forngyd med produktet. Hvis vi kunne forbedret noe pa sluttproduktet, hadde det
veert a legge til flere verktgy. Animasjon er et godt eksempel pa dette, altsa at tidslinjen kunne
"spilles av" med Play/Pause-funksjonalitet. Vi skulle gnske gjerne ha fatt forbedret heatmap-en, slik

89

at enkeltpunktene fra databasen ikke ga "rare", og potensielt uforstaelige, heatmaps. Dette kunne vi
for eksempel ha gjort ved a basere heatmap-en pa linjer istedenfor punkter.

Etter at prosjektet var ferdig, nar vi skulle publisere det pa nettsiden til Hessdalen-prosjektet
(http://www.hessdalen.org/), stgtte vi pa et nytt problem. Oppdragsgiver ville ha produktet i bade

engelsk og norsk versjon. Resultatet var en rask “hack” der alle filene med norsk tekst i seg fikk
tilsvarende oversatte versjone. Disse ligger parallelt med de originale filene. Dette er naturligvis langt
fra optimalt, men det var det eneste vi kunne gjgre pa sa kort varsel. En idéell I@sning pa dette
problemet ville vaert dedikerte “sprakfiler” som inneholdt alle tekststrenger som ble vist til brukeren,
og der brukerens sprakvalg ble brukt som oppslagsngkkel. P4 denne maten kunne disse forandres
dynamisk uten massiv duplisering av kode.

Vi er selv veldig forngyd med rapporten, siden vi har diskuterte den grundig, og prgvde flere ulike
angrepsvinkler. Hvis vi hadde satt den sammen som en liste over kronologiske hendelser, hadde
dette vaert meget enkelt a skrive. Dette hadde derimot fatt rapporten til & hgres for mye ut som en
"fortelling", og hadde ikke hatt et like ryddig oppsett. Vi valgte a heller bruke en struktur som startet
med en innledning, med oversikt over oppgaven, samt strukturen for resten av rapporten. Vi fulgte
dette opp med et analysekapittel, hvor vi tok for oss en grundig analyse av oppdragsgivers gnsker, og
sa pa de ulike teknologiene og mulighetene vi hadde til radighet for a Igse de relaterte
problemstillingene. | neste kapittel tok vi for oss de Igsningene vi valgte, og forklarte hvorfor og
hvordan vi implementerte disse. Deretter hadde vi kapittelet som dekket implementasjonen av de
ulike lgsningene. Dette kapittelet inneholdt ogsa en grundig oversikt over de ulike delene av
systemet, og hvordan disse hang sammen. De tre siste kapittelene, testing og evaluering av systemet,
diskusjon om hva vi syntes om prosjektet, og til sist en konklusjon av diskusjonen, reflekterte tilbake
over de andre kapitlene. Her fikk vi rundet av rapporten pa en god mate, der vi kunne uttrykke var
mening om oppgaven som helhet. Vi valgte a skrive hovedrapporten i Microsoft Word, da vi var mer
kjent med dette enn OpenOffice og LaTeX. Word inneholdt ogsa all funksjonalitet vi trengte. Dette
var et godt valg, da det var lettere a gjgre raske forandringer frem-og-tilbake mellom ulike
gruppemedlemmer. Word har imidlertid noen problemer og bugs, derfor kunne det i retrospekt ha
veert greit & bruke LaTeX. Da hadde det veert lettere & garantere at rapporten hadde den gnskede
strukturen, og en garantert homogen layout. Dette hadde imidlertid tatt lenger tid, da vi ogsa matte
ha laert oss a bruke LaTeX mens vi utarbeidet rapporten, derfor var Word det beste valget for oss.

6.3 Evaluering av arbeidsmetode

Vi brukte mye tid pa a diskutere ulike mulige Igsninger, og deres styrker og svakheter. Dette tok
relativt lang tid, men vi gjorde det slik for 3 oppna beste mulige kvalitet pa sluttproduktet. Ved a
gjore det slik, var det mindre sannsynlig at vi matte ga tilbake ved et senere tidspunkt for & gjgre om
pa systemet hvis vi hadde tatt darlige valg tidlig.

Implementasjonen av systemet har veert relativt uproblematisk. Noen av Igsningene har tatt lenger
tid enn forventet, og vi hadde flere problemer grunnet i systemet utarbeidet av den tidligere
prosjektgruppen, men utenom dette har arbeidet gatt greit. Vi har mgtt pa noen problemer der vi
brukte eksterne biblioteker, og implementering og tilpassning av disse har til tider vaert problematisk.
Vi valgte a fortsatt bruke disse bibliotekene, da Igsningene de ga levde opp til vare og oppdragsgivers
gnsker. Det sparte oss ogsa for mye tid, i forhold til hvis vi hadde utarbeidet dem manuelt.

90

http://www.hessdalen.org/

Det skal ogsa nevnes at en av de stgrste komponentene av vart sluttprodukt er et stort program
bestaende av mange komponenter som alle skal kommunisere med hverandre. Det er problematisk a
delegere ut arbeidsoppgaver nar man snakker om programmering av denne typen, derfor hadde vi
hovedsakelig en utnevnt person som tok for seg den overordnede programmeringsjobben.
Lgsningene fremkom sa i fellesskap, men det er hovedsakelig en person som tok seg av
implementasjonen. Vi brukte lengre tid ved a gjgre det pa denne maten, men vi fikk en bedre
oversikt over programmet, og det ble ikke misforstaelser som kunne skape stgrre problemer. Vi
kunne ha arbeidet pa de samme filene samtidig, men dette ville ha krevet meget god kommunikasjon
og planlegging, og potensielt mye tid pa a rette opp eventuelle misforstaelser. Vi foretrakk var
I@sningen, fordi vi kunne splitte opp mindre arbeidsoppgaver som for eksempel utarbeiding av
algoritmer for a Igse spesifike problemer, som godt kan behandles som en separat arbeidsoppgave
uten at dette hindrer fremgangen i prosjektet. Og da selve programmeringen i hovedsak ble handtert
av en person, kunne de andre jobbe videre pa rapporten og andre arbeidsoppgaver parallelt med
dette. Dette fungerte godt, og fgrte til et godt produkt med en helhetlig stil og kvalitet.

91

7. Konklusjon

Malet med oppgaven var a utvikle et system som gjorde det enkelt a fa oversikt over flytrafikken i
Hessdalen i et gitt tidsintervall. Det ferdige systemet gjgr dette raskt og enkelt for sluttbruker a fa til.
Tidspunktene som begrenser intervallet kan velges ned til minuttet, og dataene blir presentert pa en
oversiktlig og intuitiv mate.

Det var ogsa et godt valg a implementere en tidslinje for interpolasjon. Dataene i databasen var
diskrete verdier som bare ga "punkt-prgver" av den fulle overflyvningen. Ved hjelp av
interpolasjonen ble det mulig a ogsa fa en approksimasjon for flyets tilstand nar det befant seg
mellom slike punkter.

Diverse verktgy som heatmap og begrensning av tidsrom rundt valgte overflyvninger, gjorde det ogsa
betraktelig enklere a behandle de store mengdene data, som var en av de stgrste problemstillingene
i oppgaven.

Systemet ble levert til oppdragsgiver, som var forngyd med resultatet. Rapporten ble ogsa
tilstrekkelig omfattende, og beskrev hele prosjektgangen grundig.

Var metode fokuserte pa a presentere alle mulige Igsninger pa en gitt problemstilling. Dette
resulterte i skillet mellom kapittel 2 og kapittel 3 i denne rapporten. Vi fglte at dette fungerte godt,
da vi bade fikk mulighet til 8 presentere problemstillinger fra et overordnet perspektiv, samt
mulighet til 3 grundig forklare valgene vi tok, og hvorfor.

| tillegg gjorde vi et valg tidlig i prosjektet, om at vi hovedsakelig overlot implementasjonen av
produktet til en designert person. Dette fglte vi at fungerte godt, da dette ga et omfattende produkt,
som fulgte en uniform stil. Da vi ogsa jobbet i gruppe store deler av tiden, var det alltid mulig for alle
gruppemedlemmer 3 bidra i problemlgsningsprosessen.

Vart valg om a abstrahere oss fra systemet til den tidligere prosjektgruppen ga oss ogsa nok tid til a
utarbeide et solid prosjekt. Dette betydde ogsa at vi hadde relativt liten forstaelse for databasen og
flydeteksjonssystemet tidlig i prosjektet, noe som gjorde at litt tid gikk tapt grunnet misforstaelser.
En av de viktigste problemstillingene var gruppering av fly ved hjelp av regtime-kolonnen, som vi
ansa som ubrukbar da prosjektet startet. Men vi fglte likevel at dette var et godt valg, da vi fikk
tilstrekkelig med tid til & utarbeide vart produkt slik vi gnsket det.

Hvis prosjektet skulle viderefgres hadde implementasjon av mer spesifike typer datanalyse vaert
interessant. Vi valgte & ikke bruke tid pa dette, da vi ikke hadde noen forutsetning for & utvikle gode
algoritmer. Dataanalyse var heller ikke en del av var oppgavebeskrivelse. Dette kunne ha veert en
oppgave i seg selv, a utfgre grundig analyse av flytrafikken for a finne en sammenheng med
lysfenomenet. Slik det star ma dette gjgres manuelt. Vi har bare lagt til rette for at dataene enkelt
kan aksesseres og sammenliknes, og det blir opp til sluttbrukeren a tolke dataene i systemet.

92

8. Bibliography

CoffeeScript. (2014). CoffeeScript. Retrieved april 26, 2014, from CoffeeScript: http://coffeescript.org

Flightradar24 AB. (2014). Flightradar24. Hentet Mars 5, 2014 fra Flightradar24 Live Air Traffic:
http://www.flightradar24.com

GitHub. (2014). GitHub. Retrieved 03 12, 2014, from GitHub: https://github.com/

Movable Type Ltd. (2014). Movable Type Scripts. Retrieved april 29, 2014, from Calculate distance,
bearing and more between Latitude/Longitude points: http://www.movable-
type.co.uk/scripts/latlong.html

Oracle. (2014). Date and Time Functions, NOW(). Retrieved April 24, 2014, from MySQL ::
Documentation: http://dev.mysgl.com/doc/refman/5.5/en/date-and-time-
functions.html#function_now

TortoiseHg. (2014). TortoiseHg. Retrieved 03 12, 2014, from Bitbucket:
http://tortoisehg.bitbucket.org/about.html

93

