
 n 

 

 

  Flytrafikk over 
Hessdalen (BO14-
102) 
Gruppe BO14-G12 
 
Bacheloroppgave, Avdeling for informasjonsteknologi, Høgskolen I Østfold 
 

2014 

 
 
Peter Christopher Bach 
Robin Holm 
Daniel Dohrmann Nilsen 

HiØ 
18. mai 2014 

 



1 
 

 

Prosjektkategori: 
Bachelor 

X Fritt tilgjengelig 

Omfang i studiepoeng: 
20 Poeng 

 Fritt tilgjengelig etter 

Fagområdet: 
Dataingeniør 

 Tilgjengelig etter avtale med 
oppdragsgiver 

 

Tittel: 
Flytrafikk over Hessdalen 

Dato (leveranse): 
22.05.14 

Forfattere: 
Daniel Dohrmann Nilsen 
Peter Christopher Bach 
Robin Holm 

Veileder: 
Børre Stenseth 

Avdeling / Program: 
Avdeling for informasjonsteknologi 

Prosjektnummer: 
BO14-102 

Oppdragsgiver: 
Erling P. Strand 

Kontaktperson hos oppdragsgiver: 
 

 

Ekstrakt: 
I Hessdalen kan det til tider observeres lysfenomen som ingen hittil har funnet en forklaring på. Derfor er det 
satt opp utstyr som prøver å fange opp og analysere disse hendelsene. En potensiell kilde kan være 
flytrafikken over området. En tidligere prosjektgruppe ved HiØ har satt opp to separate systemer, ett 
lysdeteksjonssystem og et flydeteksjonssystem. Sistnevnte samler inn data om fly i området og logger dette til 
en database, slik at det kan avklares om et detektert lysfenomen var et fly eller ikke. 
 
Vår oppgave går ut på å hente ut denne informasjonen og fremstille det på en webside. Her finnes det mange 
mulige løsninger, noen mer gunstige enn andre. Derfor dreier rapporten seg i hovedsak om hvilke ulike 
teknologier som kan tas i bruk for å løse de ulike problemstillingene, samt en redegjørelse for hvordan vi har 
valgt å gjøre det, og hvorfor. 

 

  



2 
 

Forord 
 

Vår oppgave gikk ut på å sette opp en webside som lot brukeren se flytrafikk over Hessdalen i et valgt 
tidsrom. Dette var basert på et system satt opp av en tidligere prosjektgruppe, som logger data om 
flytrafikken til en database. En enkel oversikt over system ser du i Figur 1.1: Enkel systemoversikt. 
 
Figur 1.1: Enkel systemoversikt 

 
Hessdalen AMS (Automatic Measurement Station) samler inn data om flytrafikken i området via en 
sensor. Dette sendes videre til en dedikert maskin plassert på oppdragsgivers kontor, her kalt VM 
Host. Denne inneholder både fly- og lysdeteksjonssystemene. Vårt system presenterer dataene 
produsert av flydeteksjonssystemet på en webside. Sluttbruker kan så bruke data fra 
lysdeteksjonssystemet og sammenlikne dette med dataene presentert av vårt system. Slik er det 
mulig å avgjøre om et lysfenomen var et fly. Vår oppgave forholdt seg i hovedsak til 
flydeteksjonssystemet, fordi lysdeteksjon og detaljer rundt dette ikke var direkte relevante for vår 
løsning, selv om det til syvende og sist er det som er målet med oppgaven. 
  



3 
 

Sammendrag 
 

Forskning på lysfenomenet i Hessdalen har foregått i mange år. Flere bacheloroppgaver har vært 

gjennomført opp gjennom årene, alle med hensikt å få en dypere forståelse for hva dette fenomenet 

forårsakes av. Sist vår ble det kjørt et prosjekt med hensikt å bruke kameraet plassert i Hessdalen til å 

analysere bildene tatt av lysfenomenet. Som et grenprosjekt til dette ble deteksjon av fly innført, 

med den hennsikt å filtrere ut flytrafikk som en potensiell kilde (/feilkilde). Dette prosjektet ble aldri 

helt fullført, men var vellykket i å sette opp en flydetektor som logger data til en database. Det er her 

vårt prosjekt kommer inn i bildet.  

Vi bygger videre på systemet de satt opp, for å gjøre det mulig å effektivt hente ut og analysere disse 

dataene. Flytrafikk over området er betydelig. Dette får store konsekvenser for utviklingen av vårt 

system, som ikke bare må gjøre det enkelt og effektivt for brukeren å finne frem i havet av 

informasjon, men som også må forholde seg til tekniske begrensninger i alle delene av systemet. 

Databasen, webserveren og klientapplikasjonen som alle kjører på hvert sitt system må tåle 

påkjenningene av å behandle relativt store datamengder. I tillegg vil også prosjektet naturlig nok bli 

sterkt påvirket av mulighetene og begrensningene til flydeteksjonssyetemet og databasen, som vårt 

produkt bygger direkte videre på. Dette fører til at vi i vår oppgave må ta hensyn til begrensningene i 

alle de involverte systemene, og hvilke krav som er rimelige å stille til disse. Slik forebygger vi 

eventuelle problemer som kan oppstå. Dette er med målet å minimere innvirkningen problemer i 

andre systemer kan påføre vårt eget. 

Etter at produktet var ferdig utarbeidet ble det integrert med hovedsiden for Hessdalenprosjektet. 

Rapporten var omtrent ferdigstilt da dette skjedde, slik at hoveddelene av rapporten er utarbeidet 

uten hensyn til dette. Derfor har vi inkludert en kort notis om denne flyttingen der det er relevant, 

selv om det hadde liten direkte innvirkning på produktet og rapporten.  



4 
 

Takk Til 
 

Takker Dick Olausson fra den tidligere prosjektgruppen for å ha vært hjelpsom og lett tilgjengelig når 

vi hadde spørsmål angående fly- og lysdeteksjonssystemene, samt databasen fra fjorårets 

bacheloroppgave, og for å ha stilt til hjelp når det gjaldt modifikasjoner til dette systemet. 

  



5 
 

Innhold 
 

Forord.................................................................................................................................................2 

Sammendrag ......................................................................................................................................3 

Takk Til ...............................................................................................................................................4 

Innhold ...............................................................................................................................................5 

Figurliste .............................................................................................................................................8 

Ordbeskrivelse ....................................................................................................................................9 

1. Introduksjon.............................................................................................................................. 10 

1.1 Prosjektgruppen ................................................................................................................ 10 

1.2 Oppdragsgiver ................................................................................................................... 10 

1.3 Oppdraget ......................................................................................................................... 10 

1.4 Formål, leveranser og metode ........................................................................................... 10 

1.4.1 Formål ....................................................................................................................... 10 

1.4.2 Leveranser ................................................................................................................. 11 

1.4.3 Metode ...................................................................................................................... 11 

1.5 Rapportstruktur ................................................................................................................. 11 

2. Analyse av problemstillinger ..................................................................................................... 13 

2.1 Fly- og Lysdeteksjonssystemet ........................................................................................... 13 

2.1.1 Oppgradering av lys- og flydeteksjonssystem ............................................................. 13 

2.2 Brukergrensesnittet ........................................................................................................... 14 

2.2.1 Valg av kartprogramvare ............................................................................................ 14 

2.2.2 Animasjon av fly ......................................................................................................... 15 

2.2.3 Hvordan vise frem data fra databasen........................................................................ 15 

2.2.4 Verktøy og hjelpefunksjoner ...................................................................................... 16 

2.3 Database og backend......................................................................................................... 17 

2.3.1 Relevante kolonner .................................................................................................... 17 

2.3.2 Feil og mangler i data ................................................................................................. 18 

2.3.3 Dataflyt ...................................................................................................................... 19 

2.3.4 Prosessering av data, server vs. klient ........................................................................ 21 

2.3.5 Analyse av data .......................................................................................................... 21 

2.3.6 Gruppering av fly i en overflyvning ............................................................................. 23 

2.4 Plassering og drifting av systemer ...................................................................................... 25 



6 
 

2.4.1 Database.................................................................................................................... 25 

2.4.2 Flydeteksjonssystem .................................................................................................. 25 

2.4.3 Webserver ................................................................................................................. 26 

2.5 Arbeidsmetode .................................................................................................................. 26 

2.5.1 Versjonshåndtering .................................................................................................... 26 

2.5.2 Delegering av arbeidsoppgaver .................................................................................. 27 

2.5.3 Loggføring av arbeid .................................................................................................. 27 

2.5.4 Programmeringsfilosofi .............................................................................................. 28 

3. Planlegging og utforming .......................................................................................................... 29 

3.1 Fly- og Lysdeteksjonssystemet ........................................................................................... 29 

3.1.1 Oppgradering av lys- og flydeteksjonssystem ............................................................. 29 

3.1.2 Samplingsfrekvens og datamengde ............................................................................ 30 

3.2 Brukergrensesnittet ........................................................................................................... 31 

3.2.1 Valg av kartprogramvare ............................................................................................ 33 

3.2.2 Animasjon av fly ......................................................................................................... 33 

3.2.3 Hvordan vise frem data fra databasen........................................................................ 33 

3.2.4 Verktøy og hjelpefunksjoner ...................................................................................... 33 

3.3 Database og backend......................................................................................................... 41 

3.3.1 Relevante kolonner .................................................................................................... 42 

3.3.2 Feil og mangler i data ................................................................................................. 43 

3.3.3 Dataflyt ...................................................................................................................... 46 

3.3.4 Prosessering av data, server vs. klient ........................................................................ 47 

3.3.5 Analyse av data .......................................................................................................... 50 

3.3.6 Gruppering av fly i en overflyvning ............................................................................. 51 

3.4 Plassering og drifting av systemer ...................................................................................... 54 

3.4.1 Database.................................................................................................................... 54 

3.4.2 Flydeteksjonssystem .................................................................................................. 55 

3.4.3 Webserver ................................................................................................................. 55 

3.5 Arbeidsmetode .................................................................................................................. 56 

3.5.1 Versjonshåndtering .................................................................................................... 56 

3.5.2 Delegering av arbeidsoppgaver .................................................................................. 57 

3.5.3 Loggføring av arbeid .................................................................................................. 57 

3.5.4 Programmeringsfilosofi .............................................................................................. 58 

4. Implementasjon ........................................................................................................................ 60 



7 
 

4.1 Flydeteksjonssystemet ...................................................................................................... 60 

4.1.1 Systemoversikt .......................................................................................................... 60 

4.1.2 Svakheter................................................................................................................... 62 

4.1.3 Samplingsfrekvens ..................................................................................................... 62 

4.2 Database ........................................................................................................................... 63 

4.3 Backend - Kode på webserveren ........................................................................................ 67 

4.3.1 Databasetynning ........................................................................................................ 67 

4.3.2 Gruppering av fly ....................................................................................................... 68 

4.3.3 JSON .......................................................................................................................... 69 

4.3.4 Omdøping av kolonnenavn ........................................................................................ 70 

4.4 Frontend - Kode på klientmaskinen ................................................................................... 70 

4.4.1 Code behind .............................................................................................................. 70 

4.4.2 Webside GUI og funksjoner ........................................................................................ 79 

4.5 Systemoversikt .................................................................................................................. 81 

4.5.1 Hovedtrekk ................................................................................................................ 82 

4.5.2 Filstruktur .................................................................................................................. 83 

5. Testing og evaluering ................................................................................................................ 87 

6. Diskusjon .................................................................................................................................. 88 

6.1 Oppnådde mål ................................................................................................................... 88 

6.2 Levert produkt ................................................................................................................... 89 

6.3 Evaluering av arbeidsmetode ............................................................................................. 90 

7. Konklusjon ................................................................................................................................ 92 

8. Bibliography .............................................................................................................................. 93 

 

  



8 
 

Figurliste 
Figurer: 

Figur 1.1: Enkel systemoversikt ...........................................................................................................2 

Figur 2.1: FlightRadar24 .................................................................................................................... 14 

Figur 3.1: Datamengde ...................................................................................................................... 30 

Figur 3.2: Punktdensitet .................................................................................................................... 30 

Figur 3.3: Forbedret utvalg av punkter .............................................................................................. 31 

Figur 3.4: Skisse av grensesnitt .......................................................................................................... 32 

Figur 3.5: Eksempel på heatmap ....................................................................................................... 34 

Figur 3.6: Sammenliking, rettlinjet og buet path ................................................................................ 36 

Figur 3.7: Vektorikon for fly............................................................................................................... 36 

Figur 3.8: Flysti .................................................................................................................................. 37 

Figur 4.1: Systemoversikt .................................................................................................................. 61 

Figur 4.2: Konfigurasjonsfil, flydeteksjonssystem .............................................................................. 62 

Figur 4.3: Jevnt utvalg ....................................................................................................................... 68 

Figur 4.4: Ujevnt utvalg ..................................................................................................................... 68 

Figur 4.5: Informasjonsvindu ............................................................................................................. 71 

Figur 4.6: AMS ikon ........................................................................................................................... 73 

Figur 4.7: Interpolasjonsoppgave 2 ................................................................................................... 74 

Figur 4.8: Tidsmanipulator ................................................................................................................ 75 

Figur 4.9: AMS vinkel ........................................................................................................................ 76 

Figur 4.10: Heatmap med kilde ......................................................................................................... 78 

Figur 4.11: Websideelementer .......................................................................................................... 79 

Figur 4.12: Tidsvelger ........................................................................................................................ 80 

Figur 4.13: Vårt system ..................................................................................................................... 82 

 

Tabeller: 

Tabell 2.1: Databaselayout ................................................................................................................ 17 

Tabell 3.1: Databasekolonner 2 ......................................................................................................... 49 

Tabell 4.1: Eksempeldata, ulike fly .................................................................................................... 64 

 

Eksempler og kodelister: 

Eksempel 2.1: Sammenlikning av XML og JSON ................................................................................. 20 

Eksempel 3.1: Interpolasjonsoppgave ............................................................................................... 40 

Eksempel 4.1: JSON........................................................................................................................... 69 

Eksempel 4.2: Syntaks for informasjonsvindu .................................................................................... 72 

 

Formler: 

Formel 4.1: Haversine ....................................................................................................................... 77 



9 
 

 

Ordbeskrivelse 
 

Ord Beskrivelse 

Flight, 
Overflyvning, 
Rute 

Et fly som foretar en enkelt reise over det aktuelle området. Hvis 
det samme flyet kommer tilbake ved en senere annledning vil dette 
bli klassifisert som en ny overflyvning. 

Hessdalen AMS,  
AMS,  
Automatisk Målestasjon, 
Automatic Measurement 
Station 

Målestasjonen plassert i Hessdalen. Denne inneholder kameraer og 
ulike sensorer, blant annet flysensoren som er kilden til dataene vi 
bruker i vår oppgave. 

Sighting, 
Punkt, 
Observasjon, 
Flyobservasjon 

Et enkelt punkt der flyet er blitt "observert" og loggført. Flere slike 
punkter utgjør til sammen en overflyvning. 
 

Marker Et objekt som vises på kartet i form av et bilde. Dette kan for 
eksempel representere en enkelt flyobservasjon. 

Heatmap En visningsmodus for kartet. Individuelle fly vil ikke vises i denne 
modusen, i stedet vises et farget lag over kartet, der fargen 
samsvarer med sammenlagt flyintensitet over området. 

Hardkodet Oppførsel eller verdier som er en fast del av programkoden og ikke 
lett kan endres. 

Issue, 
Issuetracker 

I vår sammenheng bruker vi dette om formelle gjøremål og et 
program for å behandle disse. Hovedsakelig en enkeltstående del 
som skal implementeres i koden, eller noe som skal forandres: 
"Gjøre det mulig for brukeren å bestemme hvilken ikon som brukes 
for en Sighting", er et eksempel på et Issue. 

Repositorium ("Repo"), 
Commit, 
Changeset, 
Push 

Kildekodekontroll som gjør det enklere å organisere og ta vare på 
eldre versjoner av kodebasen. 
En commit/changeset er en formell gruppering av forandringer 
som er gjort på kodebasen. 
Changesets kan pushes til det sentrale repositoriet og bli allment 
tilgjengelig. Før dette skjer, er forandringen lokal hos den aktuelle 
utvikleren. 

Fly- og lysdeteksjonssystemer Dette henviser spesifikt til de to systemene utviklet av den tidligere 
prosjektgruppen, de systemene vi forholder oss til. Det er altså ikke 
snakk om potensielle andre lysdeteksjonssystemer eller sensorer i 
Hessdalen. Disse er begge programmer som kjører på samme 
maskin. 

VM-Host Et begrep brukt om den dedikerte maskinen på oppdragsgivers 
kontor som fly- og lysdeteksjonssystemene kjører på. Denne kjører 
også Windows på en virtuell maskin(VM), som inneholder en 
dekoder for dataene fra flytrafikken, derav navnet. 

  



10 
 

1. Introduksjon 
 
I dette kapittelet gir vi en oversikt over oppgaven vår, samt strukturen for resten av rapporten. 
 
 

1.1 Prosjektgruppen 
Gruppen består av tre personer: Daniel Dohrmann Nilsen, Peter Christopher Bach og Robin Holm. Vi 

har jobbet sammen med de fleste fag helt fra vi tok forkurs for ingeniørutdanning i 2010/2011, frem 

til denne bacheloroppgaven. Vi har alle den samme kompetansen som inkluderer blant annet 

behandling av databaser samt generell programmering i flere språk. 

 

1.2 Oppdragsgiver 
Oppdragsgiveren til prosjektet er Erling P. Strand. Han er høgskolelektor ved HiØ og har vært 

involvert i lysfenomenet i Hessdalen i mange år. Han har også vært veileder for en rekke ulike 

bacheloroppgaver som er blitt gitt i forbindelse med dette. 

 

1.3 Oppdraget 
En tidligere prosjektgruppe ved HiØ har satt opp både et fly- og et lysdeteksjonssystem, der 

førstnevnte tar i bruk en flydetektor satt opp ved den automatiske målestasjonen i Hessdalen. Denne 

tar inn informasjon om forbipasserende fly og logger dette til en database. Vår oppgave går ut på å 

hente ut dataene fra flydeteksjonssystemet og presentere dem på en webside på en gunstig måte, 

slik at det kan avklares om en lysobservasjon i lysdeteksjonssystemet var et fly. 

Sluttproduktet blir en webside med et kart som viser flytrafikken i et gitt tidsrom, j.fr. Flightradar24 

(Flightradar24 AB, 2014). Det skal være mulig for brukeren å sette et start- og sluttidspunkt, og 

deretter skal ikoner som representerer flytrafikken i dette tidsrommet plasseres ut på kartet. Disse 

ikonene skal kunne klikkes på for å gi mer utfyllende informasjon. Alt dette hentes direkte fra 

informasjonen lagret i databasen. 

 

1.4 Formål, leveranser og metode 
I delkapitlene under gir vi en kort presentasjon av målet med oppgaven og arbeidsmetodene vi tok i 

bruk for å oppnå dette. 

1.4.1 Formål 

Formålet med oppgaven er å detektere og forstå lysfenomenene som forekommer i Hessdalen, der 

vår oppgave spesifikt går ut på å gjøre det lettere å avklare om detekterte lysfenomen bare var et 

forbipasserende fly. 



11 
 

Dette oppnås ved å sette opp en webside som lar brukeren få oversikt over flytrafikken i et valgt 

tidsrom. Det skal være lett for brukeren å hente ut de aktuelle dataene, og få all relevant informasjon 

for å så kunne sammenlikne dette med et detektert lysfenomen som foregikk på et gitt tidspunkt. 

All relevant informasjon fra databasen skal knyttes opp mot flyobservasjoner som blir representert 

som ikoner på kartet. Dette kan for eksempel være flyhøyde, vinklelen fra basestasjonen og opp til 

flyet, fart, osv. Disse er for å videre kunne spesifisere hvor og i hvilken tilstand flyet befant seg i på 

det aktuelle tidspunktet, slik at det blir lettere å bruke dette som en filtreringsmetode. 

Merk også at disse dataene kan ha en annen funksjon en bare bortfiltrering av feilkilder, for det er 

ikke utenkelig at det kan være en direkte sammenheng mellom flytrafikken og disse lysfenomenene. 

Kanskje fly som flyr i en spesifikk høyde ofte forekommer på samme tid som et lysfenomen? Kanskje 

data om flytrafikken pleier å være mangelfull rundt tidspunktet der et lysfenomen har oppstått? 

Dataene kan ha mange bruksområder, derfor er det viktig at vi presenterer så mye data som mulig, 

da vi ikke har noen forutsetninger for å bestemme hva som er relevant med tanke på bruksområdet. 

1.4.2 Leveranser 

Hovedresultatet av prosjektet vil være en webside som gjør det mulig for brukeren å analysere 

flytrafikken over Hessdalen i tidsrom brukeren selv bestemmer. Selve rapporten som beskriver 

systemet, og hvordan vi kom frem til vår løsning er også en stor del av leveransen. 

1.4.3 Metode 

Vi har en relativt håndfast problemstilling med mange mulige løsninger på det samme problemet. 

Derfor blir en av våre største oppgaver å ta gode valg når det gjelder de ulike teknologiene vi har til 

rådighet. Vår "metode" blir således å argumentere grundig for og mot de ulike løsningene vi har, da 

selve implementeringen av disse er relativt uproblematisk. 

Det skal også nevnes at vårt sluttprodukt er et stort program bestående av mange komponenter som 

alle skal kommunisere med hverandre. Det kan være problematisk å delegere ut arbeidsoppgaver når 

man snakker om programmering av denne typen, derfor har vi hovedsakelig en utnevnt person som 

tar for seg den overordnede programmeringsjobben. Løsningene fremkommer så i fellesskap, men 

det er hovedsakelig en person som tar seg av implementasjonen. Dette er med unntak av mindre 

arbeidsoppgaver som for eksempel utarbeiding av algoritmer for å løse spesifike problemer, som 

godt kan behandles som en separat arbeidsoppgave uten at dette hindrer fremgangen i prosjektet. 

 

1.5 Rapportstruktur 
Kapittel 2: Analyse av problemstillinger 

Her gir vi en grundig oversikt over oppdragsgivers ønsker og kravene til oppgaven generelt, og hvilke 

muligheter vi har for å implementere disse. Her er det mange alternative teknologier og metoder for 

å løse en gitt problemstilling, derfor går vi grundig til verks med å se på de ulike alternativene. Merk 

at direkte valg av teknologier og løsninger vil bli dekket i senere kapitler, her presenteres bare 

alternativene med sine fordeler og ulemper. Bakgrunnen for denne oppdelingen er at kapittel 2 er 

ment å gi en overordnet oversikt over en gitt problemstilling, med alle muligheter vi har til rådighet. 

Slik får man en bedre kontekst og forståelse for valgene vi tok, og hvorfor. Disse blir så dekket i detalj 

i kapittel 3, med begrunnelse og forklaring av valgene vi tok. Merk at det er direkte sammenheng 



12 
 

mellom nummerering av delkapitlene i kapittel 2 og de i kapittel 3. Det vil imidlertid være flere 

tilskudd i kapittel 3. 

En stor del av analysen går også på vårt forhold til den tidligere prosjektgruppen og deres system. 

Merk også at oppgaven gitt i prosjektbeskrivelsen er relativt kortfattet, men at mange utvidelser av 

vår oppgave, samt forandringer i det tidligere systemet, kan gjøres. Derfor tar vi i dette kapittelet 

også opp hvordan vi begrenser omfanget av vår oppgave med tanke på slike potensielle utvidelser. 

Kapittel 3: Planlegging og utforming 

Etter å ha gitt en oversikt over mulige teknologiske og konseptuelle løsninger, med fordeler og 

ulemper, i kapittel 2, tar vi i kapittel 3 opp de faktiske løsningene vi valgte å bruke, samt 

begrunnelsen bak disse. Som oftest vil et delkapittel i kapittel 3 ha et direkte relatert delkapittel i 

kapittel 2, som gir en overordnet oversikt over problemstillingen. Ut ifra dette utarbeider vi så en 

plan for hvordan løsningen skal gjennomføres. 

Kapittel 4: Implementasjon 

I dette kapitelet ser vi på hvordan løsningene er implementert og hvordan disse er knyttet sammen. 

Altså en full bekrivelse av systemet og dets komponenter. 

Kapittel 5: Testing og evaluering 

Kapittel 5 tar vi for seg de ulike testfasene prosjektet har gjennomgått, og resultatene av disse. 

Deretter konkluderes kapitlet med en evaluering av hvor godt produktet lever opp til oppdragsgivers 

og våre egne krav. 

Kapittel 6: Diskusjon 

I dette kapittelet ser vi på sluttproduktet, og stiller spørsmål ved om det inneholder den 

funksjonalitet som er nødvendig for å løse problemstillingen det er laget for. Altså om systemet ble 

utformet hensiktsmessig til analyse av flytrafikk, med bakgrunn i lysfenomenene i Hessdalen. 

Her sammenlikner vi sluttproduktet med målene satt i 1.4, og ser om kravene vi satt blir oppfylt. 

Vi ser også på om oppdragsgiver er fornøyd med sluttproduktet, og om det er noe som kunne ha blitt 

forbedret. 

Til sist snur vi også dialogen mot oss selv, og ser om vi er fornøyd med produktet vi har levert, hva vi 

har lært, og eventuelt hva vi hadde gjort annerledes hvis vi skulle arbeidet på et liknende prosjekt 

igjen. 

Kapittel 7: Konklusjon 

Vi ser på et kort sammendrag av kapittel 6, diskusjonen, og trekker en konklusjon. 

  



13 
 

2. Analyse av problemstillinger 
 

I dette kapittelet tar vi for oss en grundig analyse av oppdragsgivers ønsker, og ser på de ulike 

teknologiene og mulighetene vi har til rådighet for å løse de relaterte problemstillingene. 

Problemstillingene er generelt sett presentert i rekkefølgen vi møtte på dem, men merk at selve 

konklusjonen og implementasjonen til en gitt problemstilling først blir dekket i kapittel 3. Det er også 

en direkte sammenheng mellom kapittelnummereringen i kapittel 2 og kapittel 3. 

 

2.1 Fly- og Lysdeteksjonssystemet 
I 2013 ble det kjørt et bachelorprosjekt ved Høgskolen i Østfold, med oppgave å detektere og 

analysere lysfenomenet som forekommer i Hessdalen. Oppgaven gikk ut på å analysere bilder av 

lysfenomenene som blir tatt av et kamera plassert ved den automatiske målestasjonen i Hessdalen. 

For å kunne filtrere ut potensielle feilkilder med tanke på forbipasserende fly, ble et gren-prosjekt 

innført i oppgaven. De satte opp en sensor som tok inn data fra forbipasserende fly, og deretter 

logget disse til en database. Datamaskinen som bearbeider dataene og logger dem til databasen er 

en dedikert maskin som er plassert på oppdragsgivers kontor. Selve lysdeteksjonssystemet kjører 

også på samme maskin. 

Dette prosjektet kom aldri helt i mål. Systemet som ble satt opp er relativt ustabilt, og kunne ha vært 

forbedret. Oppdragsgiver spesifiserte at det var ønskelig å få dette systemet oppgradert, hvis vi fikk 

mulighet til dette. Dette er beskrevet i 2.1.1. Denne oppgaven ble også oppført som en egen 

bacheloroppgave på anbefaling av prosjektgruppen som satt opp dette systemet, da de var klar over 

problemet. Denne oppgaven ble aldri tildelt en gruppe, slik at problemet var et faktum da vi begynte 

med vår oppgave. Vi måtte tidlig bestemme oss for i hvor stor grad vi ville involvere oss i dette 

arbeidet, da det ville få store konsekvenser for vårt eget prosjekt og hvor mye vi kunne forvente å få 

utrettet. 

Da vi var helt avhengig av dette systemet i arbeidet med å bygge vår egen løsning, måtte vi sette oss 

tilstrekkelig inn i deres system, slik at vi var klar over hvordan det fungerte, og eventuelle feil og 

mangler det måtte ha. 

2.1.1 Oppgradering av lys- og flydeteksjonssystem 

Det ble tidlig klart at lys- og flydeteksjonssystemene ikke var optimale. Disse måtte oppgraderes. Hvis 

vi bestemte oss for å ta på oss jobben å forbedre disse systemene, ville dette føre til at vi måtte 

dedikere mye tid fra vårt eget prosjekt for å sette oss grundig inn i deres system, samt å utforme de 

nødvendige løsningene. På den annen side ville dette bety at vi hadde full kontroll på hvordan 

systemene arbeidet, og som en følge av dette ville det bli betraktelig enklere å gjøre grensesnittet 

mellom flydeteksjonssystemet og vårt eget optimalt. 

Et av problemene med den eksisterende løsningen var en minnelekkasje i lysdeteksjonssystemet, 

som førte til at vertsmaskinen sluttet å fungere. Dette førte til "hull" i dekningen, der informasjonen 

ikke ble lagret til databasen. 



14 
 

Systemet var også ganske utdatert, både hardware- og software-messig, noe oppdragsgiver også ville 

forbedre dersom vi fikk tid. Hvis vi valgte å ta på oss denne jobben ville det bety at vi hadde full 

kontroll på når systemet gikk offline og liknende, slik at dette ikke fikk noen konsekvenser for vårt 

prosjekt. 

 

2.2 Brukergrensesnittet 
Oppdragsgivers ønske var at dataene fra databasen skulle presenteres på en webside i form av 

flyikoner på et kart. Her skulle brukeren selv kunne velge hvordan dataene skulle fremstilles ved hjelp 

av diverse verktøy og hjelpefunksjoner (som å begrense tidsintervallet for uthenting av data, hvor 

mye data som ble vist frem på en gang, og liknende). Dette medførte at vi måtte ta stilling til en hel 

rekke teknologiske valg, med formålet å gjøre brukeropplevelsen så smidig og effektiv som mulig. 

2.2.1 Valg av kartprogramvare 

Oppdragsgiver ønsker et system liknende websiden FlightRadar24 (Flightradar24 AB, 2014) som vist i 

Figur 2.1. 

Figur 2.1: FlightRadar24 

 

 

Her hadde vi mange muligheter for valg av kartprogramvare. Oppdragsgiver spesifiserer at det 

eneste som trengtes av kartprogramvaren var en oversikt over selve Hessdalen, derfor hadde statiske 

kart uten zooming og "panning" ikke vært et problem. Likevel mente vi at det ville være bedre å ha 

disse verktøyene tilgjengelige hvis dette lot seg gjøre. 

En mulighet vi hadde var å lage kartprogramvaren manuelt. Vi kunne altså ha brukt et statisk kart-

bilde av Hessdalen og omegn, og spesifisert koordinatene for kartets plassering, slik at alle 

flylokasjoner ble riktige i forhold til dette. Dette ville ha ført til at vi fikk full kontroll over alle aspekter 

ved kartet, slik at vi ikke ville møte på situasjoner der en gitt kartprogramløsning hadde uløselige 

mangler.  



15 
 

Likevel ville også et slikt valg ha medført enormt mye arbeid fra vår side, ikke minst med tanke på all 

testing som måtte ha blitt gjort. Hvis vi brukte en ferdig kartløsning kunne vi være relativt trygge på 

at eventuelle feil ville bli rettet opp i fremtiden. 

Når det gjalder ferdige kartløsninger finnes det flere leverandører: amCharts, OpenLayers, arcGIS, 

Google Maps og mange flere. Bare dette lille utvalget av kartprogramvare har meget liknende 

funksjonalitet, og det var klart tidlig at de fleste kartløsninger ville innfri de fundamentale kravene for 

vårt produkt. Problemstillingen vi sto ovenfor var at det var nesten umulig å få full oversikt over alle 

krav vi potensielt kunne stille i fremtiden. Vi måtte velge en kartløsning der vi kunne forvente at det 

meste allerede var dekket, selv om vi ikke hadde de spesifikke kravene klare fra starten av. 

En stor faktor i beslutningen var populariteten til de forskjellige løsningene. Dersom det fantes et 

enormt antall brukere for et produkt, var det sannsynlig at alle tenkelige former for funksjonalitet 

allerede var implementert, da andre sannsynligvis hadde stilt krav til dette tidligere. Samt at 

systemet ville bli vedlikeholdt i fremtiden av leverandøren. 

Noe av det viktigste for oss når det gjaldt valget av kartprogramvare var at kartene var rikt på detaljer 

når det ble zoomet inn på småsteder, spesielt rundt Hessdalen. Vi hadde også tenkt til å legge ut et 

stort antall ikoner på kartet, kanskje også animere disse, derfor var det best hvis programvaren 

gjorde slike operasjoner lett tilgjengelige og effektive. 

Når det gjaldt verktøy for manipulasjon av kartet for sluttbrukeren (zooming, panning, etc.), ville det 

være en fordel hvis dette allerede var inkludert i kartprogramvaren. At kartprogramvaren starter opp 

og oppdaterer seg raskt var også meget relevant. 

Til sist var prisen for løsningen en betydelig faktor. Open Source løsninger var altså å foretrekke. 

2.2.2 Animasjon av fly 

En potensielt sentral del av oppgaven var animasjon av fly, selv om dette ikke var en del av 

oppdragsbeskrivelsen. Animasjon ville gjøre det lettere for sluttbrukeren å få oversikt over et 

hendelsesforløp med store mengder data. Oppdragsgiver gjorde det klart tidlig i prosjektgangen at 

dette var ønskelig, men ikke kritisk. Derfor ble prosjektet utarbeidet med dette som et aktuelt 

tilskudd, etter at det grunnleggende var på plass. 

Når det gjaldt mulighetene for animasjon av flyikonene, måtte vi se på om vår valgte kartløsning 

hadde dette innebygd. Hvis dette ikke var tilfellet måtte vi se på hvordan vi kunne løse det 

"manuelt". Dette kunne potensielt bli en tidskrevende prosess, derfor hadde innebygget animasjon 

vært å foretrekke, men dette kunne vi ikke regne med at var tilgjengelig i en gitt kartløsning. 

Alternativt kunne det være en situasjon der de innebyggede mulighetene for animasjon ikke var 

gunstige for vårt bruksområde. Det var altså ikke utenkelig at vi måtte implementere dette manuelt, 

uansett tilfelle. 

2.2.3 Hvordan vise frem data fra databasen 

Relevante data for flyene skal være lett tilgjengelige. Vi hadde flere muligheter når det gjaldt å vise 

frem data for et gitt fly. Vi kunne for eksempel ha en "popup" på flyikonet som viste disse dataene 

når brukeren spesifikt spurte om mer informasjon (ved å trykke på et flyikon). 



16 
 

Det var også mulig å gjøre det slik at all data alltid var tilgjengelig, slik at brukeren kunne se all 

relevant informasjon umiddelbart. Dette ville vært en meget bra løsning hvis det var mulig å 

presentere dette på en oversiktlig måte. Problemet var at vi hadde store mengder data, som raskt 

kunne bli overveldende for brukeren. Det skal også nevnes at bruksområdet for løsningen er å 

analysere flytrafikken i et spesifikt tidsrom, gjerne også i et spesifikt geografisk område. Derfor var 

det mer naturlig å la brukeren selv gjøre en "forespørsel" om mer utdypende informasjon der dette 

var relevant. 

En annen mulighet vi også hadde tilgjengelig var å vise frem deler av informasjonen ved hjelp av 

smart bruk av ikonene. Man kunne for eksempel vise frem hvilken rotasjon flyet hadde på et gitt 

tidspunkt ved å faktisk rotere flyikonet på kartet. Høyden til flyet kunne representeres ved størrelsen 

på flyikonet, og så videre. Hvis vi valgte å gå for en slik løsning måtte vi være forsiktige så ikke dette 

endte opp med å være rotete og uoversiktelig på det endelige kartet. 

Til sist må det nevnes at arbeidsgivers ønsker selvsagt var kritiske når det gjaldt presentasjonen av 

data, da dette var en av de viktigste faktorene for brukbarheten til vår løsning. 

2.2.4 Verktøy og hjelpefunksjoner 

Når det gjaldt uthenting og manipulering av websiden, måtte vi gjøre det mulig for brukeren å hente 

ut de dataene som var mest relevante på en rask og effektiv måte. Her måtte bruksområdet for vårt 

produkt tas med i betraktningen. Hvis et lysfenomen ble detektert i Hessdalen ville dette bli 

registrert i en database sammen med et bilde av det faktiske fenomenet. Deretter var det så tenkt at 

sluttbrukeren av vårt system skulle kunne gå inn og sammenlikne tidspunktet for lysfenomenet med 

flytrafikken som forekom rundt denne tiden. På denne måten ville det være mulig å se om det 

aktuelle lysfenomenet var et fly eller ikke. Brukeren går altså inn i vårt system og setter relevante 

parametere for å begrense mengden data, som så vises på kartet. 

Det er også flere fly som ikke inneholder senderen som flydeteksjonssystemet bruker for å ta inn 

data om flyet, altså er det er helt usynlig for systemet. På grunn av dette ville muligheten for å la 

brukeren se sannsynligheten for fly være av interesse. Spesielt i områder (både geografisk og 

tidsmessig) der databasen ikke inneholdt data. Et slikt problem kan angripes på flere ulike måter. 

Hvis avanserte sannsynlighetsberegninger skulle utføres, var det meget viktig å ta med i 

betraktningen at dette ikke måtte bli for krevende operasjoner for de systemene det eventuelt skulle 

kjøre på. Se 2.2.4.1. 

Altså måtte vi veie kontroll brukeren skulle ha over datautvalget opp mot hvor brukervennlig 

systemet ville bli som følge av dette. Hvis brukeren hadde full kontroll over datauthentingen, ville 

dette samtidig ført til at systemet ble tungvint å bruke. Alternativt ville for dårlige verktøy og 

valgmuligheter ha ført til at brukeren kanskje ikke hadde mulighet til å få tak i den ønskede 

informasjonen. 

2.2.4.1 Sannsynlighet for fly 

Et problem med systemer som logger flydata er at ikke alle fly inneholder senderen som slike 

systemer baserer seg på. Derfor vil visse fly ikke kunne registreres i slike systemer. Det kunne altså 

være nyttig å ha en oversikt over hvor stor sannsynlighet det var for at et fly hadde passert et 

område, basert på annen trafikk som er blitt registrert der. 



17 
 

Man kunne ha sett på regelmessigheten av ruter. For eksempel kunne det hende at et gitt fly alltid 

passerte Hessdalen ca. klokken 14.00 hver dag. Dette kunne så blitt satt sammen for alle fly-ruter for 

å gi en oversikt over flyene i området. Problemet med denne tilnærmingen var at fly som ikke var en 

del av en standard rute aldri ville få noe utslag, og da lysfenomenet kan dukke opp hvor som helst, 

ville denne type analyse typisk ikke ha vært spesielt nyttig. 

En annen mulighet ville være å la brukeren spesifisere et punkt på kartet, for så å få en indikasjon på 

trafikken der. Dette ville ha krevd relativt tunge regneoperasjoner på store mengder data, og gitt et 

resultat som i beste fall var noe upålitelig, i verste fall fullstendig unyttig. En annen vinkling av denne 

problemstillingen var en såkalt "heatmap". Dette er et slags filter man legger over kartet som angir 

intensiteten av (i vårt tilfelle) flytrafikk. Ved hjelp av dette er det mulig for bruker å få en generell 

oversikt over hvor det er sannsynlig at fly har passert, basert på andre fly i et relativt stort tidsrom. 

 

2.3 Database og backend 
Som nevnt i  2.1, var databasen en kritisk faktor i vårt arbeid. En stor del av oppgaven gikk ut på å 

sette oss inn i hvordan denne var definert, og deretter bygge vår applikasjon basert på kravene dette 

stilte til grensesnittet mellom de to systemene. 

Her må det nevnes at databasen allerede hadde logget data for omtrent et halvt år før vår oppgave 

begynte. Dette førte til at eventuelle problemer som kunne oppstå med dataene, måtte løses på 

andre måter enn å forandre på databasens struktur. Vi måtte heller bygge et robust system som tålte 

potensielle feil og mangler i disse dataene. 

2.3.1 Relevante kolonner 

Databasen inneholdt mange ulike typer data for en gitt flyobservasjon (altså en "punkt-prøve" av 

flyet, med dataene det hadde i løpet av et gitt øyeblikk). Hver observasjon er relatert til et sett med 

data. I databasen representeres dette som en rad med flere kolonner, slik vi ser i Tabell 2.1: 

Databaselayout: 

Tabell 2.1: Databaselayout 

Hexident Postime Flightid Latpos Longpos Track Altitude Osv. 

06A052 1370085739 QTR991 61.48540 11.30859 295 32000  

06A052 1370085774 QTR991 61.51859 11.16329 295 32000  

06A052  1370085796 QTR991 61.53936 11.07198 295 31975  

 

En rad består av flere datafelter, bare et mindre utvalg er tatt med i denne tabellen. Hexident er en 

unik identifikator på flyet, postime er tidspunktet da flyobservasjonen fant sted og flightid er et slags 

rutenummer for flyet. De andre feltene gir data om flyets tilstand, slik som koodinater, rotasjon, 

høyde, osv. Disse blir dekket i større detalj senere. 

Til sammen vil så flere slike rader forme en "flight/overflyvning", ett fly på én tur i nærheten av 

Hessdalen. 

Her måtte vi ta et valg angående hvilke kolonner fra databasen vi skulle vise brukeren, og hvilke som 

var nødvendige for systemet selv. 



18 
 

Her måtte vi være nøye slik at vi ikke tok bort data/kolonner som kunne være av interesse for 

sluttbruker. På den annen side kunne det også være problematisk hvis vi tok med kolonner som 

virket forvirrende, eller som ga et feilaktig inntrykk. 

2.3.2 Feil og mangler i data 

Det kan oppstå situasjoner der noen av dataene i databasen er feil, eller rett og slett mangler.  

Vi hadde flere forskjellige måter å takle slike situasjoner på. 

Vi kunne gå inn i databasen ved hjelp av SQL-spørringer og "rydde opp" ved å ta bort feilaktige eller 

mangelfulle felter, eller korrigere data hvis disse var mangelfulle (ved hjelp av for eksempel 

interpolasjon). Merk at denne type forandring ville krevd konstant opprettholdelse i ettertid, samt at 

det ville tatt bort noe av kredibiliteten til dataene. Dataene kunne ha vært manipulert, og beregnet 

informasjon kunne ha avvik og mangler. 

Vi kunne også la databasen være slik den var, men prosessere dataene under uthenting, slik at vi 

gjorde en aktiv filtrering og opprydding før dataene ble vist frem til sluttbruker. På denne måten ville 

det også vært mulig å informert bruker om data som hadde blitt behandlet før fremvisning, slik at 

brukeren var klar over situasjonen. 

En annen mulighet ville vært å gått inn i flydeteksjonssystemet og korrigert mangelfulle data før de 

ble lagret til databasen. Merk at i denne situasjonen måtte vi ha reflektert eventuelle forandringer på 

de dataene som allerede var blitt logget til databasen fra før. 

En siste mulighet var å ikke behandle slike feil, og heller varsle brukeren hvis dataverdier så feilaktige 

ut. Denne løsningen kunne være ideell med tanke på effektmålet for oppgaven (å få klarhet i 

lysfenomenet), da vi ikke hadde noen reell forutsetning for å bestemme hva som var "feil" eller ikke, 

slik nevnt i 1.4.1. Hvis et fly hadde rare verdier kunne nettopp dette være relatert til lysfenomenet. I 

en slik situasjon ville bortfiltrering eller korrigering av slike "feil"-data være katastrofalt. 

Dataene i databasen kunne også være mangelfulle eller overflødige med tanke på tettheten i data. 

Relatert til dette var problemstillingen som oppsto hvis bruker valgte å hente ut for store mengder 

data. Dette er beskrevet i 2.3.2.1. 

2.3.2.1 Uthenting av for store mengder data 

Selv om vi løste problemer med datamengder i databasen kom vi likevel til et punkt der brukeren 

hadde mulighet til å velge å hente ut så mye data at grensene ble sprengt. Dette var uunngåelig da 

data som ble aggregert over tid, der all data skulle være tilgjengelig for brukeren, i teorien hadde 

uendelig stor mengde på sikt. Derfor måtte vi ta stilling til hva vi skulle gjøre hvis denne grensen ble 

nådd. 

En løsning vi kunne ty til for å løse dette problemet var å sette en fast øvre grense for hvor mye data 

en bruker kunne hente ut. For eksempel en uke eller liknende. Men hvis vi gjorde dette ville vi 

redusert fleksibiliteten til systemet vårt kraftig, derfor ønsket vi å heller finne en annen løsning. 

En annen ting vi kunne ha gjort var å hente ut dataene i flere separate "pakker". For eksempel ved at 

vi først hentet ut 10 000 rader, deretter 10 000 rader til, osv. På denne måten ville det til enhver tid 

være plass til allokering på webserveren, og det ble slutt-brukeren som måtte ta hensyn til plass på 

sin egen maskin. Dette var rimelig, da brukeren selv valgte hvor mye data som skulle uthentes.  



19 
 

Uansett løsning var det et faktum at vi måtte gi brukeren tilbakemelding på hvor mye data som ble 

uthentet, og om brukeren ville gå videre med dette. Dette ble gjort ved å sette en grense på 24 

timer, hvis et større utvalg enn dette ble utført måtte så brukeren få beskjed om at dette kunne vise 

seg å være problematisk. Denne grensen la vi så til i en konfigurasjonsfil, slik at denne kunne 

forandres i ettertid hvis den viste seg problematisk. 

Selv med dette ville uthentingen av store mengder data være et faktum. Systemet kunne ikke uten 

videre transportere store mengder data til sluttbrukerens maskin. Det var hovedsakelig webserveren 

som ville få problemer. Skulle vi teste oss frem, og sette en hardkodet grense for hvor mye som 

kunne hentes ut? Problemet med denne fremgangsmåten var at denne grensen potensielt sett vil 

kunne variere, samt at det ville begrense fleksibiliteten til systemet, slik nevnt tidligere. Slik 

beskrevet i 3.4.3, så fikk vi senere mulighet for å øke grensen på hvor mye data som kunne allokeres 

på webserveren. Likevel var det ikke utenkelig at denne måtte senkes igjen ved et senere tidspunkt, 

derfor var det best hvis vår løsning på dette var fleksibel. 

2.3.3 Dataflyt 

Vi hadde en database med alle data vi trengte. Disse dataene skulle presenteres på en webside. For å 

løse dette hadde vi mange teknologier og metoder tilgjengelige i alle ledd av prosjektet. 

For det første måtte brukeren ha et brukergrensesnitt i en nettleser, her var det ikke spesielt mange 

alternativer å snakke om. Vi måtte ha en webside med HTML (og CSS) som fundament. Utover dette 

var det utallige muligheter. Dataene måtte hentes ut fra en database og sendes til klientmasinen. 

Formatet på denne dataoverføringen er diskutert i 2.3.3.1. På webserveren som tok seg av denne 

uthentingen og videresendingen måtte vi kjøre et skript som tok seg av databasetilkoplingen og 

diverse dataprosesseringer. En utbredt løsning på dette er PHP, men det var også flere andre 

alternativer, dette er beskrevet i 2.3.3.2. 

2.3.3.1 Dataoverføring, JSON vs. XML 

Når data skal overføres fra en webserver til en klient-maskin er det flere måter dette kan skje på. 

Data kan overføres ved at det skrives i et format vi selv bestemmer, som vi så behandler på klient-

maskinen. Dette er en liknende problemstilling til den vi så i 2.2.1, der vi diskuterte mulighetene for å 

bygge kartprogramvare selv, samt hvilke fordeler og ulemper dette hadde i forhold til å bruke en 

ferdig utformet løsning. 

Det ville teoretisk sett vært mulig å la webserveren ta seg av all prosesseringen, og så servere et 

ferdig "kart-bilde" til brukermaskinen, noe som ville ført til tap av all direkte manipulasjon av kartet. 

Det ville også ført til at alle små forandringer som brukeren gjorde ville krevd en ny runde med 

uthenting og prosessering av data. Likevel hadde dette hatt den fordelen at brukermaskinen hadde 

sluppet all arbeidsbyrde, og vårt program kunne ha blitt brukt på helt enkle enheter med et 

minimum av prosesseringskraft. Vårt produkt var imidlertid tiltenkt fullverdige datamaskiner som 

ikke burde ha noe problem med arbeidsbyrden. Det skal også nevnes at det potensielt kunne blitt 

mye arbeid for webserveren hvis denne skulle bearbeide og presentere data for mange brukere 

samtidig. 

Den beste og mest utbredte løsningen på denne type problem er å overføre alle relevante data til 

brukeren, som så tar disse i bruk og får arbeidsbyrden på sin maskin. Denne overføringen skjer så i 

form av et utbredt og velprøvd dataformat, der hovedsakelig to valgmuligheter finnes, XML og JSON. 



20 
 

Disse er relativt jevnverdige med tanke på funksjonalitet, men forskjellen er at XML er betraktelig 

mer fleksibel, da det brukes i mange flere sammenhenger enn bare overføring av dataobjekter slik 

som fly. Dette kommer på bekostning av at det kreves en del ekstra "lim" i XML formatet for at alt 

skal være så tydelig som mulig. JSON på den annen side er mer spesifisert for vårt type bruksområde, 

og er således mer kompakt enn XML. Da vi har behov for å overføre potensielt enorme mengder 

data, er det selvsagt mer gunstig at det kan gjøres så kompakt som mulig. 

En kortfattet sammenlikning av de to formatene kan ses i Eksempel 2.1: Sammenlikning av XML og 

JSON 

Eksempel 2.1: Sammenlikning av XML og JSON 

XML: 102 tegn uten whitespace 
<document> 
  <by navn="Oslo" befolkning="77591" /> 
  <by navn="Fredrikstad" befolkning="77591" /> 
</document> 
 
JSON: 88 tegn uten whitespace (14% reduksjon) 
{ 
  "byer": [ 
    {  
      "navn": "Oslo",  
      "befolkning": 634463  
    }, 
    {  
      "navn": "Fredrikstad",  
      "befolkning": 77591  
    } 
  ] 
} 
 

Vi ser tydelig av dette eksempelet at XML bruker betraktelig mer plass (i antall tegn), da "by" må 

spesifiseres for hver enkelt by-objekt, mens JSON sier at "her kommer en liste med byer", og deretter 

listes alle by-objektene opp i rask rekkefølge. Merk også at den prosentvise forskjellen i antall tegn vil 

øke etterhvert som flere by-objekter legges til. 

En annen problemstilling med XML er at det også generelt sett tar lenger tid å prosessere, dette er 

også en kritisk faktor da vi vil at vårt program skal være så responsivt og raskt som mulig. Det er også 

betraktelig enklere og raskere å behandle JSON formatet i JavaScript enn det er å arbeide med XML. 

Til sist må det nevnes at det eksisterer mange andre løsninger på denne type problem, slik som 

kommaseparerte lister eller muligheter gjort tilgjengelige i HTML5. Det finnes for eksempel løsninger 

som er enda mer kompakte enn JSON. Vi valgte likevel å begrense oss til disse to, da det var disse vi 

hadde hatt mest erfaring med tidligere. Vi var også trygge på at disse ville dekke alle behovene i vårt 

produkt. 

2.3.3.2 Alternativer til PHP 

Når det gjelder skript som skal kjøre på en webserver, er en av de mest utbredte måtene å gjøre 

dette på PHP. PHP er et programmeringsspråk som vi alle har hatt erfaring med tidligere, da det har 

vært en sentral del av opplæringen i programmering ved HiØ. Likevel er det ikke enerådende, det 

finnes mange andre muligheter som dekker behovet vårt. Eksempler på disse er: 

- ASP.NET 



21 
 

- Python (med Django-rammeverket) 

- Ruby on Rails 

- Java Server Pages (JSP) 

- Node.js 

Alle disse har fordeler og ulemper, men de er alle gyldige alternativer til PHP. Likevel var det tidlig 

klart at PHP var det vi alle hadde hatt mest erfaring med. Derfor hadde vi den problemstillingen at vi 

kunne gå for noe vi visste at ville fungere, og som alle hadde akseptabel erfaring med, men at det 

senere kunne vise seg at andre løsninger var bedre for vårt bruksområde. Kanskje vår type 

applikasjon hadde vært mest gunstig å skrive i Python? 

Problemstillingen var imidlertid at hvis vi skulle gå for en av disse andre løsningene, måtte vi først ha 

satt oss grundigere inn i denne løsningen, og utviklingsprosessen kunne potensielt ha blitt utsatt 

betraktelig. 

2.3.4 Prosessering av data, server vs. klient 

Vårt sluttprodukt skal hente ut data fra en database og videresende dette til sluttbrukeren via en 

webserver. På veien vil vi behandle dataene, blant annet ved å gjøre spesifikke utvalg, filtrere ut 

kolonner, legge til nye kolonner, etc. Disse dataene kunne hovedsakelig bearbeides på 3 ulike steder: 

- I databasen ved hjelp av SQL-spørringer 

- På webserveren som henter ut og videresender dataene 

- På klientmaskinen, maskinen til slutt-brukerne til vårt system 

Da vi begynte på oppgaven kjørte databaseserveren og webserveren på skolens server, frigg. Likevel 

hadde vi mulighet for å flytte disse til andre maskiner hvis dette var gunstig for oss, dette detaljeres i 

2.4. Likevel er prinsippene de samme for denne problemstillingen. 

En databaseserver som for eksempel skal filtrere data gjør dette ekstremt effektivt i forhold til det vi 

kan få til på både maskinen til sluttbrukeren og webserveren. Men ikke alt er mulig å gjøre på en 

gunstig måte med SQL. Derfor måtte vi kanskje ty til mer "manuelle" løsninger på enten webserveren 

eller klienten der vi ikke fikk løst problemene med SQL. Her måtte lasten som eventuelt ville oppstå 

på webserveren ved stor pågang tas med i betraktning.  

Til slutt måtte vi også tenke på at ikke alle data og muligheter var tilgjengelige i alle ledd i prosessen. 

På databasen var det for eksempel problematisk å gruppere data på en gunstig måte, slik at de ble 

lettere å ta i bruk for webserveren og klientmaskinen (mer om dette i 2.3.6). Merk at dette er på 

grunn av dårlig databaselayout, og ikke begrensninger i selve programvaren. Direkte forbindelse til 

databasen fra klientsiden utelukkes naturligvis av sikkerhetshensyn.  

2.3.5 Analyse av data 

Databasen inneholder en mengde informasjon om flytrafikken rundt Hessdalen. Problemet vi sto 

ovenfor var i hvor stor grad vi skulle ta på oss oppgaven å analysere disse dataene. Her er det i 

hovedsak snakk om to ulike typer analyse. For det første vil analyse av flytrafikken for å få en bedre 

forståelse av lysfenomenet være svært relevant for effektmålet, dette er detaljert i 2.3.5.1. En annen 

type analyse som også er relevant er den som gir en bedre forståelse for flytrafikken, og som gjør 

dataene i databasen lettere tilgjengelig. Dette er beskrevet i 2.3.5.2. 



22 
 

2.3.5.1 Dataanalyse for effektmålet, forståelse av lysfenomenet 

Formålet med oppgaven var, som nevnt i 1.4.1, ikke bare å detektere flytrafikk, men også potensielt 

å bruke disse dataene for å bedre forstå lysfenomenet i seg selv. Det var ikke utenkelig at dataene 

kunne gi oss et hint om hva dette lysfenomenet faktisk var. Derfor kunne en grundig analyse av disse 

dataene være av interesse. For eksempel kunne det være en direkte sammenheng mellom 

lavtflyvende fly over Hessdalen og detekterte lysfenomener? 

Problemet med denne type analyse var at det først og fremst bygde på antakelser. Det var vanskelig 

å utarbeide funksjonalitet for generell analyse, og hvis man ønsket mer spesifikke typer analyse, var 

det uendelig mange metoder/teorier man kunne ha kommet med, som så måtte implementeres. På 

den annen side hadde vi en unik mulighet for å lage smarte løsninger mens vi utarbeidet vårt 

produkt. I ettertid ville det vært mer problematisk å implementere disse, uten først å sette seg godt 

inn i vårt system, og deretter utvide dette. Derfor hadde det vært gunstig hvis vi inkluderte relevante 

analysemetoder mens vi arbeidet med oppgaven. 

Vi måtte altså ta en avgjørelse om hvilke typer analyse vi skulle inkludere i vårt produkt, og hvilke vi 

skulle overlate til manuell analyse, eller eventuelle utvidelser av systemet i fremtiden. 

2.3.5.2 Dataanalyse for resultatmålet, bedre oversikt over flytrafikken 

Den andre typen analyse er den som gjør at brukere av vårt system lettere får den oversikten de 

trenger. Her er det også snakk om potensielt uendelige muligheter for analyse, men her er hensikten 

med analysen mer spesifik, vi ønsker å gjøre data lettere tilgjengelig for brukeren. 

Problemet med så store datamengder som vår oppgave tar for seg, er at det er vanskelig å 

presentere disse dataene på en måte som gir brukeren oversikt over det som er interessant i en gitt 

situasjon. 

Det er umulig for oss å imøtekomme alle mulige problemstillinger som fremtidige brukere kan ville 

løse ved hjelp av våre data, men det er visse ting som vi kan gjøre mye lettere for brukere ved å 

implementere relativt enkel funksjonalitet. For eksempel se på trender i dataene, hyppighet av fly, 

gjentagende fly-avganger og liknende. 

En av de mest relevante formene for analyse i denne sammenhengen er noe som har blitt nevnt flere 

ganger tidligere, sannsynligheten for fly i et område. 

Flydeteksjonssystemet har den svakheten at fly som ikke inneholder den senderen som systemet 

bruker for å hente inn relevante data vil være helt usynlige for flydeteksjonssystemet, og som følge 

vårt system. Derfor hadde det vært gunstig for sluttbrukeren å hvertfall få en generell oversikt over 

sannsynligheten for fly i et gitt område. Selv om vårt system viser at det ikke var flytrafikk i et område 

på det nøyaktige tidspunktet da et lysfenomen ble registrert, er det fortsatt fullt mulig at det var et 

fly der, men det bare manglet den påkrevde senderen som flydeteksjonssystemet bruker. Dette kan 

løses på flere måter. 

En mulighet som hadde vært meget gunstig for oppdragsgiver og andre brukere av systemet, hadde 

vært hvis brukeren kunne plassere ut en markør, og deretter fått opp en prosentvis sannsynlighet for 

om det var et fly i dette område ved det angitte tidspunktet basert på trender i flydataene. Dette ville 

ha krevd relativt mye arbeid for å få til, imidlertid, derfor måtte vi forholde oss til hvor vanskelig 



23 
 

dette hadde vært å implementere, hvor nøyaktig og effektivt dette hadde vært, samt hvilke andre 

alternativer vi hadde. 

Et direkte alternativ til dette som gir en mer generell oversikt, men som dekker et liknende behov, er 

en såkalt "heatmap" (se 3.2.4.1, spesifikt Figur 3.5: Eksempel på heatmap). Dette er et slags bilde 

som baserer seg på et sett med punkter plassert ut på et kart. Plotter man all flytrafikk (eller hva som 

helst annet) på et kart, vil man umiddelbart se områder med høy trafikk. Det vil være større 

ansamlinger av fly i noen regioner enn i andre. En heatmap gir en generell oversikt over dette ved å 

markere områder på kartet der intensiteten av objekter er størst med en farge, som så blir "svakere" 

jo mindre intensiteten blir. Ved hjelp av en heatmap kan man få en estimert sannsynlighet for om det 

finnes fly i et gitt område. 

Forskjellen på å sette ut en markør slik nevnt over, og det å generere en heatmap, er at heatmap-en 

er så generell at den potensielt kan bli ubrukelig for å finne sannsynligheten for fly. Dette er blant 

annet fordi en heatmap gjerne vil ta med flydata for et stort tidsintervall, for eksempel all flytrafikk 

for en måned. Dette kan løses ved at dataene som brukes til heatmap-en kan spesifiseres nærmere 

av brukeren. For eksempel kunne man bruke all data for en måned, men bare for data mellom 

klokken 17.00 og 18.00 på søndager. Dette ville imidlertid tatt betraktelig lenger tid å implementere, 

da vi måtte ha tatt hensyn til alle potensielle ønsker en bruker kunne ha anngående heatmap-en. 

Til sist må det også nevnes at denne type analyse vil kreve store mengder data, problemstillingen var 

så hvor analysen skulle finne sted, og hvordan den skulle foregå slik at dette ble gjort mest mulig 

effektivt. Selve heatmap kunne ha blitt generert både på webserveren og på klientmaskinen. 

Den mest "økonomiske" måten å generere heatmaps på, ville være å gjøre dette på forhånd og ha 

mellomlagrede kart klare. Dette hadde vært meget kostnadseffektivt, da all prosessering kunne skje 

på forhånd, slik at ingen deler av systemet fikk noen signifikant arbeidsbyrde. Dette hadde imidlertid 

den svakheten at brukeren ikke lenger kunne spesifisere detaljer rundt hvordan heatmap-en ble 

generert. Tapet av fleksibilitet ville antakelig gjort funksjonen relativt unyttig, da det ville vært lang 

ventetid (opp til en måned/uke avhengig av konfigurasjon) og umulig å få heatmaps for noe annet 

enn hele måneder. 

En annen problemstilling var også at det hele tiden blir lagret mer data av flydeteksjonssystemet. 

Derfor måtte en prosess kjøres regelmessig, som regnet ut heatmaps for den nye flytrafikken. 

2.3.6 Gruppering av fly i en overflyvning 

Behovet for å gruppere fly rundt en overflyvning ble umiddelbart klart for oss da tynning av fly i en 

overflyvning, og behandling av overflyvninger som enheter (spesielt på kartet) ble nødvendige. Hvilke 

muligheter vi hadde for dette er beskrevet i delkapitlene under. 

For å spesifisere nøyaktig hvilken type gruppering det er snakk om, så mener vi altså at et fly som flyr 

i nærheten av Hessdalen vil etterlate seg flere "punkter" i databasen. Alle disse tilhører en logisk 

gruppe, en "overflyvning". Hvis dette flyet kommer tilbake senere vil dette representere en ny 

overflyvning som danner sin egen gruppe. Målet er så å bruke dataene og finne en måte å gruppere 

disse på, slik at en overflyvning kan behandles som ett objekt. Dette er nødvendig av flere grunner, 

hovedsakelig for å kunne tynne ut databasen, samt for å kunne behandle grupper når stier (paths) 

skal tegnes opp på kartet, osv (se 3.2.4.4). 



24 
 

Grupperinger basert på de eksisterende kolonnene er beskrevet i delkapitlene under, men det var 

også andre fremgangsmåter vi kunne ha gått for, disse skal vi først gi en oversikt over. 

Problemet med gruppering oppsto hovedsakelig fordi dataene produsert av flydeteksjonssystemet er 

separate punkter for en vilkårlig overflyvning, uten noen direkte definerende kolonne som 

identifiserer en overflyvning. Slik beskrevet under var likevel dette mulig ved å bruke en kombinasjon 

av kolonner, men denne problemstillingen kunne vært helt avverget hvis flydeteksjonssystemet ble 

modifisert. 

Flydeteksjonssystemet tar inn data for en overflyvning, og er til alle tider klar over hvilket fly det har 

kontakt med, derfor hadde det vært mulig for systemet å generere en separat kolonne (i form av et 

løpetall) som skilte på overflyvninger. Ved hjelp av dette ville det vært enkelt å gruppere alle fly som 

hadde det samme løpetallet i en overflyvning. 

En annen mulighet ville vært å strukturert databasen på en slik måte at flere tabeller ble tatt i bruk. 

En tabell kunne inneholdt overflyvninger, og en annen kunne så inneholdt punktene som oppgjorde 

denne overflyvningen, og som så refererte til hvilken overflyvning de tilhørte. Dette ville krevd en 

identifiserende kolonne slik nevnt i forrige paragraf. 

Slik nevnt i 2.3.6.3 er Regtime en meget relevant kolonne med tanke på gruppering, men det har den 

svakheten at det potensielt kan oppstå små variasjoner under lagring, som gjør at en overflyvning 

kan få opp til flere ulike regtime verdier. Dette kunne vært løst ved at denne kolonnen ikke ble 

bestemt av databasefunksjonen, NOW(), men isteden valgte det nåværende tidspunktet i 

flydeteksjonssystemet. Denne verdien kunne så bli satt for alle punkter til overflyvningen. Da ville  

det vært garantert at denne alltid var lik for alle punkter i en overflyvning. 

Alle disse metodene hadde imidlertid en stor svakhet, det krevde at vi utførte fundamentale 

forandringer i flydeteksjonssystemet, som så måtte bli reflektert for alle data allerede logget til 

databasen. Dette ville vært umulig for de to første metodene, da dette ville krevd at data ble 

gruppert slik at de kunne tildeles en felles identifikator. Altså en gruppering for å oppnå gruppering. 

2.3.6.1 Gruppering ved hjelp av hexident og postime 

Den første og mest åpenbare løsningen var å se på en gitt hexident (en unik identifikator for et gitt 

fly, som kunne være lik for flere ulike overflyvninger), og dermed se på tidspunktene for denne 

hexidenten. For å forklare dette tar vi for oss et eksempel der en hexident ble registrert i databasen 

ved følgende tidspunkter: 

 3. mars 2014 klokken 14:43 

 3. mars 2014 klokken 14:45 

 3. mars 2014 klokken 14.50 

 7. mars 2014 klokken 9.45 

 7. mars 2014 klokken 9.46 

Vi ser at det er logisk å gruppere disse slik at de 3 første punktene inneholder en overflyvning, 

deretter kommer de neste 2 punktene flere dager etter, slik at disse blir gruppert i sin egen 

overflyvning. Desverre er det en stor problemstilling med denne fremgangsmåten. Hvordan skal man 

sette grensene for om et fly tilhører samme overflyvning eller ikke? Vi ser på et nytt eksempel: 



25 
 

 5. januar 2014 klokken 19:11 

 5. januar 2014 klokken 19:17 

 5. januar 2014 klokken 19.18 

 5. januar 2014 klokken 19.20 

Spørsmålet er om dette er en overflyvning. Det er det vanskelig å vite. Kanskje mellomrommet på ca. 

5 minutter fra det første punktet og til de 3 andre faktisk betyr at flyet nå har begynt på en ny 

overflyvning? Til å begynne med, tenkte vi på det slik at hvis punktene var så nær hverandre, så 

behandlet vi det likevel bare som en overflyvning, da dette var logisk. Dette ville imidlertid ha ført til 

problemet hvis flyet byttet FlightID mens dette skjedde. Tynningen av data ville også bli ujevn hvis to 

overflyvninger ble slått sammen, og deretter tynnet ut. 

2.3.6.2 Gruppering ved hjelp av FlightID 

FlightID fungerer som et slags rutenummer for et fly. Der Hexident er en unik identifikator på et fly, 

som kunne gå igjen for flere overflyvninger, så ville Flightid være unik og konstant for en 

overflyvning. Derfor ble det raskt klart at dette potensielt kunne brukes for å gruppere fly. 

2.3.6.3 Gruppering ved hjelp av hexident og regtime 

En annen mulighet for gruppering var å se på datafeltene hexident og regtime. 

Først må det forklares at vårt syn på "regtime"-kolonnen i databasen var at dette var klokkeslettet 

data ble lagret til databasen, altså noe i nærheten av "postime" (tidspunktet som flyet sendte ut en 

melding om dens nåværende status). Det viste seg imidlertid at utover å være klokkeslettet som data 

ble lagret til databasen, så ble også all data for en gitt overflyvning lagret SAMTIDIG. 

Systemet tok inn informasjon fra passerende fly kontinuerlig, og aggregerte det mens flyet var i 

luften. Etter at flyet hadde forlatt rekkevidden til sensoren ble så all data lagret til databasen 

samtidig. Dette betydde at regtime ville være lik for alle data i en overflyvning. Altså kunne vi 

tilsynelatende bruke regtime for å nøyaktig kunne gruppere data. Hexident ble brukt hvis to ulike fly 

ble registrert med samme regtime (de fløy ut av rekkevidden til sensoren samtidig). 

 

2.4 Plassering og drifting av systemer 
Vi hadde hovedsakelig tre ulike systemer å forholde oss til. Hvor disse skulle hostes (plasseres og 

driftes) var viktig for stabiliteten til vårt system, og hvordan det ville tåle å kjøre konstant i flere år 

fremover. 

2.4.1 Database 

Vi vurderte kort om vi skulle la databasen være hostet på skolens server Frigg, slik den var da 

oppgaven vår begynte, eller om det var mer gunstig å flytte den et annet sted på grunn av annen 

trafikk på Frigg. 

2.4.2 Flydeteksjonssystem 

Slik nevnt i 2.1 så kjørte flydeteksjonssystemet (sammen med lysdeteksjonssystemet) på en dedikert 

datamaskin på oppdragsgivers kontor. Denne løsningen var ikke helt optimal, spesielt med tanke på 

at denne maskinen fikk lite tilsyn. Derfor var det viktig å utforske eventuelle alternativer til dette. 



26 
 

Det var flere ting som måtte tas hensyn til når det gjaldt plasseringen av dette systemet, men 

hovedsakelig var det ustabiliteten til systemet som var den største faktoren. Et slikt system krever 

regelmessig tilsyn for å være sikker på at det fungerer som det skal, men det er få som vil ta på seg 

en slik oppgave. Derfor kunne det blant anne bli vanskelig å få dette driftet på skolens servere. 

2.4.3 Webserver 

Når det gjaldt webserveren var den største faktoren hvor mye minne som kunne allokeres på 

webserveren på en gang. Problemet var at store mengder data skulle overføres til sluttbrukeren, og 

dermed kunne grensene raskt sprenges. En stor del av prosesseringen gikk også på webserveren, 

derfor var det viktig å forsikre oss om at serveren som hostet denne hadde tilstrekkelig med 

ressurser for å utføre alle prosesseringer for flere samtidige klienter. 

En annen problemstilling var at lysfenomenet i Hessdalen var, og er, av internasjonal interesse. 

Derfor kunne vårt system potensielt få perioder med stor pågang. Altså måte systemet ha en så stor 

grad av tilsyn og vedlikehold at dette ikke ville føre til problemer. 

Webserveren er, i likhet med databasen, hostet på Frigg. Denne brukes i en rekke forskjellige 

sammenhenger, men vi har liten kontroll over den. Hvis det skulle oppstå problemer med at serveren 

ikke kunne allokere nok minne til programmet vårt, kunne dette bli vanskelig å løse. 

Vi var altså i en situasjon der webserveren var ideell å drifte på frigg så lenge vi ikke nådde noen 

grenser. Derfor måtte vi utforme vår applikasjon med dette i tankene hvis vi bestemte oss for å 

plassere webserveren der. 

 

2.5 Arbeidsmetode 
Vårt prosjekt hadde som mål å produsere en webside som inneholdt mye funksjonalitet, og som til 

tider behandlet relativt store datamengder. Programmering var en stor del av prosjektet, og dette 

måtte det tas hensyn til med tanke på vår arbeidsmetode. 

2.5.1 Versjonshåndtering 

En av de største problemstillingene vi sto overfor med prosjektet var hvordan vi skulle håndtere 

backup og administrering av programkoden vi skrev, eller med andre ord versjonshåndtering. Idéen 

bak versjonshåndtering er at brukere skal kunne gjøre forandringer, og deretter "committe" disse 

(altså en navngitt forandring som legges inn i systemet). Slik at det er lett å holde oversikt over 

forandringer, og hva hver enkelt forandring innebærer. Dette inneholder også muligheten for å gå 

tilbake til en tidligere commit, altså å tilbakestille endringer hvis noe skulle være feil. Alle disse 

forandringene samles i et såkalt "repository" (en sentral lagringsplass som holder oversikt over alle 

forandringer, samt nåværende versjon av dokumentet, etc.). 

Til prosjektet ble vi tildelt en brukerkonto på "Trac", som kunne brukes for å kommunisere med 

prosjektveileder, dokumentere prosjektet og holde oversikt over Issues. Trac inneholdt også et 

versjonshåndteringssystem, SVN. Dette var altså en mulighet for versjonshåndtering. 

SVN er bygget på en slik måte at alt er sentralisert i et repository, eller en "ekte" sentral lagringsplass 

om du vil. Altså vil forandringer som vi gjør på prosjektet, når de committes, automatisk appliseres til 

det sentrale repository-et, for alle brukere. Dette kunne være problematisk, da det kanskje viste seg i 



27 
 

ettertid at en feil hadde forekommet, som så ville føre til at dette måtte tilbakestilles. Det var bedre 

hvis hvert enkelt gruppemedlem hadde sitt eget lokale repository, og deretter opplaste dette til det 

sentrale reposity når alt var klart. Hver bruker kunne så velge når sykronisering med dette hoved-

repositoriet skulle skje. 

En løsning foreslått av prosjektveileder var Git (GitHub, 2014), men dette hadde den 

problemstillingen at det var betraktelig mer komplisert og problematisk i bruk i forhold til hva vi 

krevde til vårt bruksområde. Da vi bare var tre som jobbet sammen, samt at vi unngikk å dele opp 

programmeringsarbeidet så langt dette lot seg gjøre (beskrevet i 2.5.2), så var denne type løsning 

relativt omfattende i forhold til våre behov. 

Versjonshåndtering gjør at backup og reversering av forandringer alltid er lett tilgjengelig. Dette gjør 

også at alle involverte alltid har oversikt over hvilke forandringer som skjer i et prosjekt. Spørsmålet 

var så hvilket versjonshåndteringssystem som var mest gunstig for vår arbeidssituasjon. 

2.5.2 Delegering av arbeidsoppgaver 

Sluttproduktet i vårt prosjekt var ett sammenhengende system som omhandlet en enkelt webside. 

Dette førte til at en enhet i systemet til enhver tid var avhengig av alle andre enheter. Hvis for 

eksempel en forandring ble gjort på webserveren, ville dette mest sannsynlig få direkte følger for 

selve websiden også. Denne type løsning gjorde det problematisk å delegere ut større 

arbeidsoppgaver til ulike gruppemedlemmer, da disse delene til enhver tid måtte holdes samstemte. 

Små misforståelser kunne bety store utsettelser. 

Vi måtte altså ta en avgjørelse på hvordan vi hadde tenkt til å arbeide, slik at vi kunne jobbe så 

effektivt som mulig gjennom hele prosjektperioden.  

Den første muligheten var å prøve å dele opp programmeringsjobber til hver enkelt, og "sy" dette 

sammen etterhvert som ulike deler ble ferdig. Problemet var at misforståelser kunne føre til store 

utsettelser. En annen problemstilling var å teste systemet for feil, da det ofte var vanskelig å vite hvor 

eventuelle feil ligger før alle deler settes sammen, særlig dersom ingen har en komplett oversikt. 

Dette ville imidlertid bety rask fremgang i prosjektet, da utviklingen kunne foregå parallelt. 

Vi kunne også arbeide hver for oss med ulike arbeidsoppgaver, men dette har den problemstillingen 

at enkeltmedlemmer kan miste helhetsperspektivet i løpet av arbeidet. Et annet problem er at det til 

tider kan være vanskelig å dele opp arbeidet slik at alle har noe å gjøre. 

På den annen side, ville konstant gruppearbeid ført til mye bortkastet tid for andre 

gruppemedlemmer, da det ikke var utenkelig at man til tider måtte vente på at en løsning skulle 

implementeres. Dette har imidlertid den positive effekten at alle gruppemedlemmer alltid har 

oversikt over hele prosjektgangen, og problemer kan raskt løses da alle er samlet når de oppstår. 

2.5.3 Loggføring av arbeid 

Arbeidet foregikk fortløpende med programmering av produktet, rapportskriving og møter med 

oppdragsgiver og veileder. I løpet av denne tiden måtte vi ha en klart definert metode for å loggføre 

alle viktige hendelser slik at vi hadde dette tilgjengelig når vi skulle ta dette med i rapporten senere. 

Derfor var det viktig å tidlig finne en en måte å raskt og effektivt loggføre arbeid. Her var det uendelig 

mange måter å gå frem på, men i prinsippet var det likegyldig hvordan vi gikk frem, bare vi fikk med 

all relevant informasjon. 



28 
 

Det må også nevnes at vi selvsagt holdt regelmessige møter med tilhørende møtereferater, men det 

var hovedsakelig hendelsene utenfor disse som var problematiske å finne gode måter å loggføre.  

En av de viktigste formene for loggføring i denne type prosjekt var issue tracking, altså en oversikt 

oversikt over arbeidsoppgaver som måtte utføres i programkoden, og resultatet av disse. 

2.5.3.1 Issue tracking 

Issuetracking er rett og slett en måte å holde oversikt over hva om skal implementeres i koden, og 

resultatet av slike forandringer. For eksempel kunne et gruppemedlem lage et issue for å gjøre det 

mulig å gi en beskjed til brukeren når store datamengder hentes ut. Dette kunne så implementeres 

og merkes som "løst". 

Det var mange ulike løsninger for issue tracking. Vi kunne blant annet bruke løsningen innebygd i 

Trac, eller alternativt en liknende løsning innebygget i Bitbucket (nettstedet for prosjektstyring som 

hoster Mercurial, vår løsning på versjonering, se 3.5.1). Den største problemstillingen vi måtte tenke 

på var hvor brukervennlig løsningen var, og hvor lett det var å eksportere løsningen nær slutten av 

prosjektet, hvis dette eventuelt skulle inkluderes i hovedrapporten. 

2.5.4 Programmeringsfilosofi 

Det er hovedsakelig to hovedparadigmer å forholde seg til når det gjelder programmeringsfilosofier. 

Det er om koden skal utarbeides etter fossefall-prinsippet eller om den skal utarbeides iterativt. 

Fossefall-prinsippet vil si at hvert "nivå" av prosessen utarbeides for å være basis for det neste. Man 

går aldri tilbake til et tidligere nivå da hvert nivå utarbeides for å være endelig. For eksempel vil dette 

si at testing av systemet foregår i ett nivå, etter at systemet er fullt utarbeidet. 

Alternativet er å arbeide utifra en iterativ prosess, der man ofte går tilbake og forandrer på 

funksjoner og metoder som allerede er ferdigstilt, hvis dette er gunstig for helhetsløsningen. Det vil si 

at i løpet av prosessen vil det alltid være rom for å gå tilbake og omarbeide deler av systemet, selv 

om det kan medføre at andre deler også må tilpasses dette. 

I tillegg til dette er også generelle "kjøreregler" for programmering kjekt å få definert tidlig, hvis ulike 

medlemmer skal arbeide på det samme systemet. Det er imidlertid viktig at disse ikke blir for 

begrensende, da dette kan kjøre selve kodearbeidet vanskeligere enn hva som er hensiktsmessig. 

  



29 
 

3. Planlegging og utforming 
 

I kapittel 2 presenterte vi en oversikt over problemstillinger som er relevant i vår oppgave. I dette 

kapittelet skal vi ta for oss de løsningene vi valgte og hvorfor, samt hvordan vi implementerer disse. 

Dette skaper så fundamentet for det fulle systemet vi skal levere, som blir beskrevet i sin helhet i 

kapittel 4. Merk at det er en direkte sammenheng mellom nummereringen av delkapitler i kapittel 2 

og 3. 

 

3.1 Fly- og Lysdeteksjonssystemet 
Vår oppgave var å utarbeide en webside som presenterer dataene fra databasen satt opp av den 

tidligere prosjektgruppen. Likevel ble det spesifisert av oppdragsgiver at vi burde se nærmere på 

deres løsning, og forbedre systemet hvis vi så muligheter for dette. Vårt prosjekt bygget direkte på 

deres system, derfor var det helt kritisk at dette fungerte tilfredsstillende. 

Slik nevnt i 2.1 var selve flydeteksjonen bare en liten del av deres system, og dette produserte data 

som ble lagret i en database driftet på skolens egen server. Så lenge det var data i databasen, kunne 

vi utarbeide vårt produkt, og dette ville ha fungert (kanskje med litt rare resultater) uansett hva som 

hendte med fly- og lysdeteksjonssystemene. 

Diverse problemer med lys- og flydeteksjonssystemene gjorde at disse måtte oppgraderes, dette er 

detaljert i 3.1.1. Med dette som utgangspunkt bestemte vi oss for å ikke involvere oss i dette 

systemet annet enn de dataene som lå i databasen. Vi kunne så konsentrere oss om å utarbeide vårt 

eget produkt først og fremst, og hvis det skulle bli tid mot slutten av prosjektet kunne vi heller ta for 

oss dette systemet da.  

Merk at dette var med forbehold om at databasen de hadde satt opp var tilfresstillende for 

behovene til vårt prosjekt. Eventuelle problemer som oppsto med deres system løste vi så heller ved 

å ta kontakt med den tidligere prosjektgruppen direkte, istedenfor å prøve å løse det selv. På denne 

måten fikk vi konsentrert oss om vårt prosjekt i første rekke, uten i tillegg å måtte bruke tid på å 

sette oss inn i deres system. Det ville imidlertid vise seg at forandringer måtte gjøres i deres system 

for at vi skulle kunne gjøre vår jobb, dette er beskrevet i 3.1.2. 

3.1.1 Oppgradering av lys- og flydeteksjonssystem 

Systemet viste seg å være relativt ustabilt på grunn av flere faktorer. Blant annet hadde systemet et 

problem med en minnelekasje. Det var også nødvendig med generell oppdatering av programvaren 

på maskinen. Vi besluttet oss imidlertid tidlig i prosjektet for å ikke ta på oss denne jobben, da vi 

prioriterte arbeid på vårt eget system. Disse problemstillingene ble senere løst av den tidligere 

prosjektgruppen, som tok på seg jobben med å oppdatere og forbedre systemene. De utførte dette 

parallelt med, men uavhengig av, vårt prosjekt. 

Selv etter disse forandringene var systemet fortsatt relativt ustabilt. Dette var noe vi måtte ta hensyn 

til i arbeidet fremover. 



30 
 

For det første kjørte hovedsakelig programmene på en Linux-maskin, men det viste seg nødvendig 

med en proprietær løsning som tolket meldingene sendt ut fra passerende fly. Uten dette var det 

umulig å dekode meldingene. Dette var et Windows-program, og derfor ble Windows satt opp på en 

virtuell maskin på Linux-maskinen. En svikt i et av leddene kunne føre til at hele systemet sluttet å 

fungere. Dette blir beskrevet nærmere i kapittel 4. 

Med alle disse usikkerhetsmomentene tatt med i betraktning, konkluderte vi med at selv om 

systemet ble forbedret, så kunne vi ikke nødvendigvis stole på at det ville kjøre stabilt i årene 

fremover. Dermed tok vi forbehold om dette mens vi utarbeidet vår løsning, slik at eventuelle feil 

som kunne forekomme ikke ville få konsekvenser for vårt system. 

3.1.2 Samplingsfrekvens og datamengde 

Et kritisk problem vi møtte på kort tid etter at vi begynte å hente ut data og kjøre tester på vårt 

system, var at samplingsfrekvensen til systemet var alt for stor. Det ble registrert mer data enn 

nødvendig for å representere en overflyvning. Flere steder var det over hundre punkter per 

overflyvning. Dette var alt for mye data, spesielt med tanke på at de fleste flyene bare beveget seg i 

rette linjer, med liten variasjon i dataverdiene. Problemet er illustrert i Figur 3.1 og Figur 3.2, som 

viser en tidlig utgave av systemet der hver observasjon har et eget flyikon. 

Figur 3.1: Datamengde 

 

 

Figur 3.2: Punktdensitet 

 

 



31 
 

Måten vi valgte å løse problemet på var å gjøre forandringer i flydeteksjonssystemet, slik at dette 

begrenset hvor mange punkter som kunne bli registrert for et forbipasserende fly. Denne grensen 

satt vi til 25 (der vi tidligere hadde over 100 punkter for de fleste overflyvninger). Dette var den 

minste mulige grensen som systemet tillot uten å måtte skrives helt om. Denne forandringen måtte 

også reflekteres i de dataene som allerede hadde blitt logget til databasen, dette er dekket i 3.3.2.3. 

Denne forandringen ble utarbeidet i samarbeid med den tidligere prosjektgruppen, da vi hadde valgt 

å ikke sette oss inn i deres system i større grad, slik nevnt tidligere. Forandringen er beskrevet i større 

detalj i kapittel 4. 

Vi ønsket altså å oppnå en effekt som likner den representert i Figur 3.3, altså en jevn uttynning slik 

at vi står igjen med et mer gunstig antall punkter. Slik vi ser på den andre figuren er det fortsatt fullt 

mulig å se flyets bane. Merk at figuren ikke er basert på faktiske data, og svingningen er noe 

overdrevet. 

 

Figur 3.3: Forbedret utvalg av punkter 

 

Merk at selv om databasen ble tynnet ut til å ha maksimalt 25 punkter, la vi i tillegg til funksjonalitet i 

vårt program som gjorde et enda tynner utvalg. Vi satt grensen til 10 punkter for hver overflyvning. 

Dette ga et tilstrekkelig bra bilde av overflyningen. Denne grensen var så tilgjengelig i 

konfigurasjonsfilen, slik at dette kunne justeres i ettertid (opp til 25 punkter). 

Merk at alle (maks) 25 punkter likevel måtte overføres til webserveren. Deretter ble de tynnet ut og 

sendt videre til klientmaskinen. 

3.2 Brukergrensesnittet 
Brukergrensesnittet er den mest kritiske komponenten i vårt system. Dette måtte være utformet på 

en måte som ga brukeren best mulige verktøy og funksjoner for å kunne analysere flydataene så 

effektivt som mulig. Etter flere samtaler med arbeidsgiver for å få klarhet i hva som ble ønsket av 

systemet, samt hvilke metoder vi anså som mest gunstige for å produsere disse kravene, kom vi frem 

til en midlertidig skisse tidlig i prosjektet. Denne ga en oversikt over vår arbeidsplan som vi kom til å 

følge gjennom hele prosjektet, se Figur 3.4: Skisse av grensesnitt 



32 
 

Figur 3.4: Skisse av grensesnitt 

 

 

Figuren gir en oversikt over generel layout og alle funksjoner vi ønsket inkludert i det ferdige 

produktet, detaljene om de ulike elementene er beskrevet i de påfølgende underkapitlene og 

kapittel 4, men først gir vi en kort oversikt: 

Alt begynner med at brukeren velger et tidsrom ved hjelp av verktøyet øverst til venstre (ikke 

detaljert på denne figuren). Data hentes ut for det aktuelle tidsrommet og vise dette på kartet. Dette 

tidsrommet vil definere grensene for tidslinjen, vist nederst til venstre. Her kan brukeren velge ut et 

spesifikt "øyeblikk" i tid, som blir representert ved hjelp av ikoner på kartet. 

Kartet inneholder hovedsakelig to ulike ikoner. Den første type ikon er datapunktene fra databasen, 

altså alle punktene som til sammen oppgjør en "overflyvning". Et fly på vei over Hessdalen ved et gitt 

tidspunkt. Disse kan skrus av eller på ved hjelp av knappen "Stier", som viser disse nodene samt en 

linje som knytter disse sammen. 

Den andre type ikon er ikonet som representerer "øyeblikket" valgt av brukeren på tidslinjen. Dette 

vil altså plasseres på kartet på det stedet flyet befant seg ved dette tidspunktet, og data assosiert 

med ikonet vil også beskrive dette øyeblikksbildet av flyet. 

Disse funksjonene vil gi brukeren mulighet for å se data for et ønsket tidsrom, samt oversikt over et 

spesifikt tidspunkt ved hjelp av tidslinjen. Dette er den grunnleggende funksjonaliteten brukeren 

trenger for å ta i bruk vårt system. De andre funksjonene, samt en mer detaljert beskrivelse av de 

funksjonene vi allerede har nevn her, finner du i delkapitlene under. 



33 
 

3.2.1 Valg av kartprogramvare 

Etter å ha sammenliknet de ulike kartløsningene, kom vi frem til at Google Maps var det beste valget, 

hovedsakelig fordi Google Maps er utbredt og har mange brukere. En annen bonus er at Google 

Maps er godt dokumentert. 

Google Maps hadde all funksjonalitet vi trengte. Det var enkelt å plassere og manipulere ikoner, 

kartet var detaljert nok for vårt behov (og merkbart bedre enn flere av konkurrentene), samt at 

zooming, panning og valg mellom satellitt- og kartbilder alle var inkludert direkte i kartet automatisk.  

Det er selvfølgelig også en fordel at Google Maps er helt gratis. 

3.2.2 Animasjon av fly 

Animasjon var noe vi gjerne ønsket å få til. Dette ville gi brukeren en enkel oversikt over et 

hendelsesforløp med mange fly. Det viste seg imidlertid at oppdragsgiver ikke så på dette som viktig 

for sluttproduktet. Dermed valgte vi å ikke implementere dette, for heller å prioritere andre aspekter 

ved prosjektet. 

3.2.3 Hvordan vise frem data fra databasen 

Vi valgte å presentere flydataene hovedsakelig ved hjelp av popup-bobler/informasjonsvinduer. Disse 

dukker opp når man trykker på et flyikon eller en av nodene for overflyvningen (altså en 

flyobservasjon fra databasen). Dette var oppdragsgivers ønske etter å ha blitt presentert de ulike 

mulighetene.  

Google Maps gjorde dette meget enkelt å legge inn, samt at informasjonsvinduer for flere fly uten 

problem kunne være oppe samtidig. De ville også følge flyikonene de tilhørte hvis disse ble flyttet på. 

Vi introduserte en ny problemstilling når vi valgte å gjøre det på denne måten. Hvordan skulle 

brukeren få påvirke åpning og lukking av flere slike informasjonsvinduer, og hvilke verktøy vi skulle 

tilby for å gjøre dette lettvint? Dette er beskrevet i 3.2.4.3. 

I tillegg til informasjonsvinduer valgte vi også å representere data om rotasjon direkte ved å rotere 

flyikonene på kartet. Posisjonen til flyene ble selvsagt representert ved plassering på kartet, og det 

valgte tidspunktet på tidslinjen ble tydelig fremstilt. 

Tidslinjen oppgir altså tidspunktet da flyet meddelte sin status, slik beskrevet i 3.2.4.5. Idéen er at 

brukeren velger ut et tidspunkt på tidslinjen, og flyene vil bli plassert på riktig plass for å reflektere 

dette. Tidslinjen beskriver hele tiden "nåværende" tidspunkt og hvilke data som gjaldt på dette 

tidspunktet. Disse verdiene er interpolert ved hjelp av nærliggende noder, se 3.2.4.6. 

Merk også at selv om diverse data blir representert ved hjelp av selve ikonene, er dataene også 

inkludert i informasjonsvinduene for å få dem i tekstlig format. 

Resten av datafeltene gjøres om til et passende format og vises direkte i informasjonsvinduene. 

3.2.4 Verktøy og hjelpefunksjoner 

Det viktigste når det gjaldt å utforme grensesnittet var å bestemme hvilke verktøy som var mest 

hjelpsomme for oppdragsgiver og andre sluttbrukere når de skulle ta i bruk systemet . Målet med 

vårt system er at når et lysfenomen blir observert i Hessdalen, skal det være enkelt å gå inn i vårt 

system og finne flytrafikken for tidsrommet der dette forekom. Det skal også være enkelt å 



34 
 

sammenlikne data "side-by-side" for å se om det detekterte lysfenomenet kunne ha vært et fly. For å 

oppnå dette måtte vi gi brukeren verktøy som viste den nødvendige informasjonen på en lett 

tilgjengelig måte, og helst også på en så detaljert måte at det var lett å ta en beslutning direkte på 

bakgrunn av dataene. 

3.2.4.1 Sannsynlighet for fly (heatmap) 

Det kan være fly som mangler senderen som flydeteksjonssystemer baserer seg på. Dette gjør at slike 

fly vil være helt usynlige for slike systemer. På grunn av dette kunne det vært til stor hjelp for 

brukeren å se sannsynligheten for fly. 

Løsningen vi endte opp med, var en såkalt "heatmap". Denne fargelegger kartet avhengig av 

forekomster, intensitet eller liknende – i dette tilfellet, den sammenlagte flytrafikken i en gitt 

periode. Områder der mange fly passerer vil ha en "varmere" farge enn områder der det går mindre 

trafikk. Et generelt eksempel på en heatmap kan ses i Figur 3.5. Dette gir brukeren en generell 

oversikt over sannsynligheten for fly i et større område. 

Figur 3.5: Eksempel på heatmap 

  

Måten vi implementerte dette på var ved å sette inn alle koordinatparene for de ulike flyene i et gitt 

tidsområdet i en heatmap-funksjon, som lager et gjennomsiktig lag og legger det på kartet. Fargen gir 

fort og intuitivt et fornuftig estimat på sannsynligheten for fly i et hvilket som helst område. 

Hvis brukeren prøver å finne ut om det befant seg et fly på en bestemt plass på et bestemt tidspunkt, 

kan det skje at ingen fly er registrert i databasen for det aktuelle tidspunktet. Da kan brukeren velge 

å vise et heatmap med data fra for eksempel en uke tilbake i tid. Hvis man ser at området er sterkt 



35 
 

rødt (altså at det var høy intensitet av fly i det valgte intervallet), så kan man konkludere med at selv 

om ingen fly ble registrert, er det likevel relativt sannsynlig at det hadde vært et fly der. 

Heatmap løsningen vi tok i bruk var en eksisterende funksjon fra google.maps.visualization. Denne 

tok imot en rekke punkter, og tegnet deretter en heatmap ut fra disse. Merk at denne løsningen ikke 

godtar linjer, man måtte oppgi punkter. Vi bestemte oss for å bruke punktene direkte fra databasen, 

uten å tilpasse disse ytterligere for å danne linjer (ved hjelp av for eksempel interpolasjon). Dette 

gjorde vi på grunnlaget at de valgte punktene allerede ga et tilstrekkelig godt bilde av flyets reise. 

3.2.4.2 Begrensning av tidsrom og område 

For det første var det klart at brukeren måtte få velge et ganske spesifikt tidsrom og geografisk 

område for dataene som skulle uthentes. Begrensning av området kunne brukeren gjøre manuelt ved 

å flytte og zoome på kartet, men i tillegg la vi til en grense som kunne konfigureres for systemet. 

Denne blir representert som et rødt rektangel på kartet, og angir en grense for området der flydata 

blir hentet fra databasen. Vi valgte å sette denne grensen såpass generell at alle flydata i systemet 

ville bli bli inkludert til å begynne med. Hvis oppdragsgiver så ønsket det kunne denne forandres i 

ettertid, for å begrense størrelsen på utvalget. Denne grensen fungerte også slik at brukeren ble 

opplyst om hvor det kunne forventes å finne data. 

I tillegg til dette skulle brukeren få velge et tidspunkt (dato og klokkeslett) for når data skulle 

uthentes. For eksempel skulle alle fly mellom klokken 13.30 den 01.08.2013 og klokken 13.50 samme 

dag hentes ut og vises på kartet. Som et alternativ til dette la vi også til muligheten for brukeren å se 

på flydata for "siste time" og liknende, hovedsakelig for å teste systemet. Ved hjelp av dette ble det 

enkelt og intuitivt for brukeren å finne de dataene som var relevante. 

3.2.4.3 Informasjonsvinduer for fly 

Oppdragsgiver ba spesifikt om en knapp der det kunne velges om informasjonsvinduene skulle forbli 

på skjermen, eller om åpning av et nytt informasjonsvindu skulle lukke det forrige. På denne måten 

var det både mulig for brukeren å ha flere informasjonsvinduer åpne for å sammenlike informasjon, 

men også mulig å raskt gå over informasjon uten at skjermen ble for rotete, eller krevde manuell 

opprydding. 

I utgangspunktet har man bare et informasjonsvindu oppe av gangen. Hvis man trykker på et nytt fly, 

blir forrige informasjonsvindu lukket men det nye åpnes. I "sticky"-modus er det mulig å ha flere 

informasjonsvinduer oppe samtidig, slik at man enkelt kan sammenlikne dataene for flere ulike fly. 

Dersom sticky-modus slås av igjen, skal alle informasjonsvinduer lukkes. 

Vi måtte ta hensyn til at brukeren ved en feil kunne trykke på sticky-knappen etter å ha åpnet flere 

informasjonsvinduer. Dette kunne ført til at arbeid gikk tapt, og måtte gjøres på nytt. For å unngå 

dette inkluderte vi en dialog som advarte brukeren om at X informasjonsvinduer ville lukkes hvis 

brukeren valgte å skru av sticky-mode. Slik unngikk brukeren å tape arbeidstid ved et feilklikk. 

3.2.4.4 Vise veien et fly tar (stier og observasjoner) 

Slik nevnt flere ganger tidligere var det snakk om relativt store datamengder. Et døgn kunne 

inneholde data om flere tusen punkter. Det var ikke utenkelig at en bruker hentet ut data for for 

eksempel en dag eller to, og dette ville ha ført til et relativt stort antall ikoner på kartet. Selvsagt 



36 
 

kunne brukeren "spole" frem og tilbake i tid (se 3.2.4.5) for å se banen til flyet, men dette var relativt 

tungvint.  

Vi bestemte oss for å tegne en enkel, rett linje mellom hver loggførte posisjon i en overflyvning. 

Denne gir en mye klarere oversikt over hvor flyene kommer fra, og viser nesten nøyaktig hvor de 

passerer fra første til siste loggførte posisjon. Eventuelle avvik på grunn av små forandringer, svakt 

kurvede baner og liknende anses å være neglisjerbare. En sammenlikning ser du i Figur 3.6: 

Sammenliking, rettlinjet og buet path. Vi ser at forskjellen er minimal, selv i et konstruert eksempel 

med overdreven svingning. 

Figur 3.6: Sammenliking, rettlinjet og buet path 

 

For ordens skyld skal funksjonen kunne slås av dersom brukeren ønsker det. 

Slik funksjonen var opprinnelig, ble hver enkelt observasjon også plottet på kartet. Dessverre er ikke 

Google Maps optimisert med tanke på større mengder "markers". Derfor ble det raskt problematisk å 

tegne alle disse på kartet, og det viste seg at en del av grunnen til dette var formatet på ikonet. Til å 

begynne med brukte vi det samme ikonet for hver observasjon som for selve flyet (som egentlig bare 

skulle representere hvor flyet befant seg i øyeblikket valgt ut på tidslinjen). Bildet er gjengitt i Figur 

3.7. 

Figur 3.7: Vektorikon for fly 

 

 

Vektorgrafikk er et format der man oppgir en rekke koordinater som representerer hjørnene i bildet. 

Dette gjør at det er lett å transformere bildet i ettertid, for eksempel når det dreier seg om rotasjon, 

størrelse, farger, gjennomsiktighet og andre aspekter vi kan tenke oss å ha bruk for. Vektorgrafikk er 

også mye mindre i filstørrelse. 



37 
 

Problemet er imidlertid at denne fleksibiliteten har en pris – det blir betraktelig tyngre å prosessere 

disse enn et enkelt bilde. Dette var akseptabelt (og nødvendig) for selve flyikonet, men 

holdepunktene på stien til et fly kunne bruke betraktelig enklere ikoner, da vi ikke hadde bruk for all 

denne funksjonaliteten. 

Til å begynne med prøvde vi å bruke enklere vektorgrafikk, for eksempel bare en enkel sirkel, men til 

og med dette var relativt krevende å prosessere når det ble mange observasjoner å vise samtidig. 

Den beste løsningen var å ta i bruk rastergrafikk. Vi ofret muligheten til å forandre ikonet dynamisk, 

men bildene ble til gjengjeld mye mindre krevende å vise, og ytelsen i applikasjonen ble merkbart 

bedre. 

Ikonet vi valgte å bruke var en svart sirkel med et hvitt sentrum, dette er avbildet i Figur 3.8: Flysti. 

Dette ville mest sannsynlig alltid være lett synlig på kartet, og var derfor perfekt får vårt bruk. Etter å 

ha tatt i bruk dette ikonet hadde vi ikke lenger problemer med å tegne opp stier for fly. 

For å gjøre det lettere for brukeren å skille ut enkelte fly på kartet valgte vi å gi unike farger til ulike 

overflyvninger. Flyet og dets tilhørende "path" ble gitt samme farge. Det var selvsagt fordelaktig hvis 

fargen tildelt et fly var så unik som mulig i forhold til andre fly på kartet. Vi valgte å løse dette ved å la 

en tilfeldig tallgenerator bestemme fargene for en overflyvning. Problemet med de fleste slike 

generatorer er at de ikke faktisk er tilfeldige, de følger visse trender. Dette ville vært for dårlig for 

vårt bruksområde. Det er mulig å oppnå større grad av "tilfeldighet" ved å gi tallgeneratoren et såkalt 

"seed", altså et tall som brukes som utgangspunkt for funksjonen. Så lenge seedet er unikt vil også 

tallene produsert av generatoret mest sannsynlig være meget ulike tallene produsert av en generator 

med et annet seed. 

JavaScripts innebygde tilfeldig tallgenerator har ikke støtte for å spesifisere seed-verdi. Vi måtte altså 

ty til et eksternt bibliotek for å oppnå den funksjonaliteten vi trengte. Seedet vi ga til funksjonen var 

summen av flyets ID, rutenummer og registreringstidspunkt. Det var sterkt usannsynlig at to ulike 

overflyvninger ville produsere samme tall, dermed var dette et bra seed. 

Deretter brukte vi så dette tallet for å bestemme de tre HSL-fargekomponentene til flyet, som vi til 

sist konverterte til RGB-farger. Denne fargen brukte vi så på både flyet og dets sti. Resultatet ser du i 

Figur 3.8: Flysti. 

Figur 3.8: Flysti 

 



38 
 

Vi ser at flyikonet og stien har samme farge, samt at flyobservasjonspunktene er hvite sirkler med en 

svart ytterkant. Disse er godt synlige både i forhold til selve kartet og linjen for flyets sti. 

Det skal også nevnes at tidsrommet spesifisert av brukeren kan være større enn intervallet for en gitt 

overflyvning. Vi måtte finne en løsning på dette problemet, slik at brukeren raskere kunne få 

detaljert (interpolert) informasjon om en spesifik overflyvning, uten å måtte lete rundt på tidslinjen. 

Hvordan vi løste dette er beskrevet i 3.2.4.7. 

En liten detalj som må nevnes var størrelsen på ikonene. Vi bestemte oss for å bruke relativt små 

ikoner, slik at kartet skulle bli mer oversiktlig ved store samlinger av fly. Vi valgte imidlertid å utvide 

den klikkbare regionen, slik at man kunne trykke på ikonet selv om pekeren var plassert litt utenfor. 

Hele funksjonaliteten for å vise noder for loggførte posisjoner, og selve stien som forbinder disse, ble 

gjort tilgjengelige for bruker å skru av og på, slik at bruker selv kunne tilpasse etter behov. 

3.2.4.5 Verktøy for manipulasjon av tid 

I 3.2.4.2 spesifiserte vi brukerens muligheter for å bestemme tidsrommet for datauthenting. Innenfor 

dette tidsrommet var det opprinnelig ønskelig å animeres disse i tid ved hjelp av "Play/Pause"-

funksjonalitet. Altså hadde vi en tidslinje med markert tidspunkt for hva som ble vist akkurat "nå", et 

øyeblikksbilde. Muligheter for å justere tidspunktet frem og tilbake var lett tilgjengelig ved å trykke 

på ulike steder på tidslinjen eller ved å dra i markøren. Hvert "øyeblikk" ville så bestemme hvor 

flyikonet skulle plasseres på kartet, for å illustrere hvor flyet befant seg på dette tidspunktet. 

Ved hjelp av interpolasjonen beskrevet i 3.2.4.6 var det mulig å hente ut data fra en "kontinuerlig" 

datamengde, i motsetning til de diskrete verdiene fra databasen. Uten dette hadde ikke tidslinjen 

vært like relevant, da ikonene og deres verdier hadde blitt meget "hakkete". I denne situasjonen 

hadde det vært like greit å bare vise alle tilgjengelige data til brukeren samtidig. Dette var selvsagt 

ikke mulig med kontinuerlig tidsutvalg, da det fantes potensielt uendelige mengder data (man kunne 

teoretisk sett hente ut data fra klokken 17:36:50.762 hvis dette var ønskelig, for eksempel). 

Med denne funksjonaliteten på plass var animasjon relativt enkelt å få til. Vi trengte bare å flytte det 

valgte "øyeblikket" på tidslinjen ved regelmessige intervaller. Det viste seg imidlertid at animasjon 

ikke var viktig for oppdragsgiver, derfor implementerte vi ikke dette. Selve tidslinjen kunne nå 

manipuleres manuelt, for å velge tidspunkt for interpolering, dette var godt nok for 

brukeropplevelsen. Animasjon hadde ikke tilført noe betydelig utover dette. 

3.2.4.6 LERP, lineær interpolasjon 

Interpolasjon går i hovedsak ut på at man vil finne ut en tredje verdi som ligger mellom to andre 

diskrete verdier. Dette er illustrert med et enkelt eksempel, se   



39 
 

 

Eksempel 3.1: Interpolasjonsoppgave. 

  



40 
 

 

Eksempel 3.1: Interpolasjonsoppgave 

 

Problemstillingen er altså at det finnes to sett med data, og man ønsker å finne verdien på et punkt 

plassert mellom disse. Fremgangsmåten er som følger: 

Hvis høyden går fra å være 31000m til 32000m vil det si at det skjer en forandring på 1000 meter. 

Denne forandringen foregår i et tidsrom på 64 - 15 = 49 tidsenheter (benevningen er irrelevant). 

Tiden der vi ønsker å finne høyden, 30, er 15 sekunder etter starttidspunktet. 

Altså vil vi vite hva høyden er ut av totalt 1000 meter på et tidspunkt som er 15 ut av totalt 49 

tidsenheter. Dette er triviell matematikk: 

 

    
 
  

  
    

  

  
          

Altså er flyet i en høyde av 31000 + 306 meter på det angitte tidspunktet, 31 306 meter. 

Denne metoden kan så brukes for å interpolere alle de relevante dataene mellom to punkter (rader i 

databasen). 

Merk at det her er snakk om lineær interpolasjon, det finnes andre mer avanserte metoder som også 

kan brukes for å få mer nøyaktig resultater, men dette gir tilstrekkelig nøyaktighet for vårt 

bruksområde. 

Det skal nevnes at denne metoden potensielt kunne produsere feilaktige verdier, hovedsakelig hvis 

en av nodene som utregningene ble basert på inneholdt feil eller mangler. Alle slike verdier måtte 

altså tas med en klype salt. Likevel gjorde dette det betraktelig lettere for brukere av vårt system å 

finne ut om et potensielt lysfenomen var et fly eller ikke. Hvis området for et detektert lysfenomen 

var midt mellom to flyregistreringer, slapp nå brukeren å manuelt regne ut verdier for dette 

området. Nå ga vi brukeren verktøy for å automatisk få dette opp ved å bevege tidslinjen, slik at 

flyikonet ble plassert på det aktuelle området. Verdiene som så ble fremstilt var en tilnærming til hva 

de ville ha vært hvis flydeteksjonssystemet hadde logget en verdi for dette øyeblikket. 

3.2.4.7 Snarveier og praktiske funksjoner 

Etter at de grunnleggende verktøyene var på plass, viste testing raskt at programmet kunne bli litt 

tungvindt å bruke. Ved å legge til noen mindre praktiske funksjoner, ble sluttbrukers opplevelse 



41 
 

straks mer behagelig. Disse viste seg nødvendige hovedsakelig på grunn av de store tidsrommene 

som kunne hentes ut. Tidslinjen ble vanskelig å navigere med hvis denne omhandlet et stort 

tidsintervall. 

For det første gjorde vi det mulig for sluttbruker å begrense det uthentede tidsrommet til varigheten 

til en enkelt overflyvning. For eksempel kunne bruker hente ut data for flere timer, for å få en 

overordnet oversikt. Deretter kunne det vise seg at det ikke var mer enn én relevant overflyvning i 

hele utvalget. Denne funksjonaliteten gjorde det så lett for bruker å velge denne overflyvningen, og 

gjøre et nytt utvalg som bare inneholdt tidsrommet for denne, slik at uninteressant data ble filtrert 

bort. Etter en slik filtrering ble også tidslinjen lettere å bruke, da den arbeidet på et mye mindre 

tidsrom. 

En annen funksjon vi la til, som hovedsakelig var for å gjøre navigasjon på tidslinjen enklere, var å la 

brukeren hoppe til ønskede tidspunkt ved hjelp av kartet. Alle observasjons-noder på kartet ble gitt 

en "hopp til tidspunkt"-funksjon. Dette gjorde at tidslinjen ble satt til det tidspunktet for den valgte 

observasjonen. Ved hjelp av dette ble det lettere for brukeren å "finne" en overflyvning på tidslinjen, 

for å få frem flyikonet for denne. Deretter kunne ikonet beveges frem og tilbake på overflyvningen 

for å få de interpolerte verdiene. 

Etter å ha holdt en demo for oppdragsgiver viste det seg også at systemet ikke var helt intuitivt, 

spesielt med tanke på heatmap og tidslinjen. Derfor la vi vil "hjelp"-ikoner ved disse, som forklarte 

funksjonaliteten til programmet. 

 

3.3 Database og backend 
Databasen med flydata var helt kritisk for vårt prosjekt, da alt vi foretok oss baserte oss på disse 

dataene. Det var viktig for oss at dataene var til å stole på, og at vi fullt ut forsto betydningen av alle 

kolonnene (datafeltene). Under har du en liste av alle kolonnene i databasen, eksempler på data de 

kan inneholde og hva disse dataene faktisk betyr. Hver rad i databasen omhandler ett 

"øyeblikksbilde" av ett fly (en flyobservasjon), og inneholder alle disse datakolonnene. 

Kolonner: 

- Hexident: 06A052 

o Dette er ID'en på den fysiske boksen som sender ut disse datameldingene, som så 

blir plukket opp av flydeteksjonssystemet. 

- Postime: 1370085774 

o Dette er tidspunktet for når denne meldingen ble sendt ut, og derfor også 

tidspunktet for når dette flyet hadde disse dataene. 

- Flightid: QTR991 

o Dette er ID'en på ruten som et fly tar. Denne er for det meste unik og identifiserende 

på samme måte som hexident, men ikke stabil nok til at denne kan brukes på noen 

gunstig måte. 

- Latpos: 61.51859000 

o Dette er breddegraden flyet var på ved tidspunktet gitt av postime. 

- Longpos: 11.16329000 



42 
 

o Dette er lengdegraden. 

- Track: 295 

o Dette er rotasjonen til flyet (ut av 360 grader). 

- Speed: 483 

o Dette er hastigheten til flyet. 

- Altitude: 32000 

o Dette er høyden over havet som flyet befinner seg på for øyeblikket. 

- Verticalrate: 64 

o Dette er hvor raskt flyet stiger (0 betyr at flyet flyr rett frem uten å stige eller synke). 

- Incam: 1 

o Denne kolonnen tilsier om flyet befant seg i kameraet i Hessdalen ved dette 

tidspunktet. 

o Dette regnes ut av systemet til den tidligere prosjektgruppen. 

- Regtime: 2013-06-01 13:35:16 

o Dette angir tidspunktet for når dataene ble logget til databasen. Merk at alle 

punktene for en enkelt overflyvning lastes opp til databasen på samme tid, slik at alle 

får samme regtime. 

En mer grundig beskrivelse av databasen finner du i Kapittel 4 Implementasjon. 

Hvordan vi løste de ulike problemstillingene med tanke på databasen, og hvordan dataene skulle 

behandles i vårt system, er beskrevet i de neste delkapitlene. 

3.3.1 Relevante kolonner 

Hvilke kolonner vi tok i bruk ble hovedsakelig bestemt av arbeidsgiver. Generelt sett var det ønskelig 

at så mye data som mulig ble tatt med. De eneste kolonnene som var relativt uinteressante var 

"incam" og "regtime". 

Slik nevnt i databasebeskrivelsen i 3.3 var "incam" datafeltet som anga om flyet var innenfor området 

der det ble fanget opp av kameraet plassert ved Hessdalen AMS. Dette ble regnet ut ved å se på om 

flyets koordinater var innenfor et sett med statiske verdier. Dette var litt problematisk da verdiene 

som ble brukt som grenser bare var approksimasjoner. De tok heller ikke hensyn til flyets vinkel fra 

bakkenivå, vær og avstand fra kameraet. Oppdragsgiver var enig i at dette ikke var spesielt brukbart, 

og vi bestemte oss så for å ikke ta med denne kolonnen i datafremvisningen. Dette kunne ha gitt 

brukere et feilaktig inntrykk av at de for eksempel skulle kunne se et fly i kameraet, når det i 

virkeligheten var plassert høyt over kameraet, for eksempel. 

Når det gjaldt "regtime" så var dette et datafelt som tilsa når dataene ble registrert i databasen. 

Dette var ikke av interesse for oppdragsgiver eller sluttbruker. Det var bare et datafelt som ble brukt 

av systemet. Vi tok likevel disse dataene med i dataoverføringen, men det ble ikke tilgjengeliggjort 

for sluttbrukeren. Grunnen til at vi tok det med var at regtime viste seg å være kritisk for å kunne 

gruppere punkter på en overflyvning, se 3.3.6. 

Alle andre kolonner ble tatt med, men det skal nevnes at flere ble gitt nye navn slik at det skulle være 

mer forståelige for sluttbruker. Dette er beskrevet i kapittel 4. 



43 
 

3.3.2 Feil og mangler i data 

Dataene som plukkes opp av flydeteksjonssystemet kan inneholde feil. Det skjer også at systemet 

ikke klarer å identifisere en gitt verdi, og derfor setter disse til å være en standard-verdi. Dette er 0 

for tall-verdier og en tom streng ("") for tekst-baserte verdier. Vi måtte ta hensyn til dette i vår 

løsning, da spesielt 0-verdier kunne være problematiske å tolke. 

Da vi innførte geografiske avgrensninger i systemet (slik beskrevet i 3.2.4.2), ble dette problemet 

med feil i koordinatdata løst. Alle koordinater utenfor de spesifiserte grensene ble filtrert bort ved 

uthenting. 

Når det gjaldt de andre kolonnene, bestemte vi oss for å ikke "reparere" disse dataene. Dette var 

hovedsakelig fordi vi ikke hadde noen gunstig måte å løse dette på. Hvis vi hadde for eksempel 

interpolert verdier fra andre flyobservasjoner på overflyvningen ville dette heller gitt et "falskt" bilde 

av flyet. Da var det bedre å bare la feilene i data være. Brukeren ville selv se når data var mangelfulle, 

slik som fly med hastighet "0". 

Det skal også nevnes at visse kolonner kunne ha unøyaktigheter. For eksempel kunne det skje at 

Regtime (altså tidspunktet der hele overflyvningen logges til databasen) ble forskjellig for 2 ulike 

punkter i den samme overflyvningen. Dette skjedde hvis systemklokken akkurat hadde "tikket over" 

til et nytt sekund midt mellom innsettingen av to rader i databasen. Vi løste dette problemet enkelt 

ved å bestemme at to nærliggende regtime verdier for samme overflyvning ble satt til den samme 

verdien. Dette er beskrevet nærmere i 3.3.6. 

3.3.2.1 Uthenting av for store data 

En problemstilling som var uungåelig når brukeren kunne spesifisere tidsintervall for uthenting, var at 

brukeren kunne velge å hente ut enorme mengder data. Brukeren ville uansett ha potensiale til å 

sprenge grensene, selv om vi reduserte mengdene data (se 3.3.2.2). Det var hovedsakelig på 

webserveren at dette problemet presenterte seg. Eventuelle problemer med datamengde på 

klientmaskinen ville bare bli begrenset av maskinvaren, noe brukeren selv hadde ansvar for. 

En meget fleksibel løsning vi først prøvde å implementere, var at systemet automatisk skulle forsøke 

å hente ut data, og detektere problemer med plassmangel. Hvis problemet oppsto ville så systemet 

prøve igjen, men denne gangen med bare halvparten av dataene i første omgang, deretter siste 

halvdel for seg. Dette kunne så bli gjort rekursivt helt til en akseptabel datamengde ble funnet. 

Desverre hadde dette en stor problemstilling som viste seg å være uløselig. Når webserveren 

oppdager at grensen for minneallokering er nådd, blir en uhåndterbar feilmelding sendt fra systemet. 

Programmet blir terminert, og det er umulig å berge situasjonen. Vi måtte defor se på alternative 

løsninger. 

Etter å ha utforsket mulighetene fant vi en betraktelig bedre løsning, som løste alle problemene vi 

hadde med minneallokering. Metoden vi hadde brukt tidligere for å hente ut data, var å samle alle 

radene fra tabellen på webservere før de så ble sendt videre til klient i en stor "pakke". Dette var 

fordi vi ikke var klar over muligheten for å skrive alle rader fra databasen direkte til output-strømmen 

til klienten, etterhvert som de ble uthentet. Vi unngikk altså at data ble aggregert på serveren, ved at 

de ble forløpende hentet ut fra databasen, prosessert, og så videresendt til klienten. Detaljene rundt 

hvordan dette foregikk blir forklart nærmere i 3.3.3 og 3.3.4. 



44 
 

3.3.2.2 Problemer med datamengde 

I systemet kunne det oppstå situasjoner der vi hadde for mye eller for lite data til å få en gunstig 

fremvisning i vårt system. Hvis vi for eksempel bare hadde ett punkt for en hel overflyvning, ville 

disse dataene bli vanskelige å tolke, spesielt hvis de inneholdt feil. Vi bestemte oss likevel for å ta 

med alle slike enkelt-punkter. Grunnen til dette var at effektmålet for vårt system i bunn og grunn 

var å bedre forstå lysfenomenene som forekommer i Hessdalen. Med dette klart for oss sa det seg 

selv at å filtrere bort data som på overflaten så mangelfulle ut, kunne være et enormt feilsteg. Det 

var ikke helt utenkelig at det kunne være en sammenheng mellom lysfenomenet og forekomster av 

datamangel. Derfor arbeidet vi med den filosofien at vi tok med "så mye data som mulig", så sant det 

lot seg gjøre å presentere på kartet.  

Vi valgte imidlertid å gi brukeren direkte tilbakemelding på helt tomme utvalg, da dette kunne tyde 

på at systemet hadde vært offline i denne perioden. Brukeren fikk også en liste med datoer der vi var 

sikre på at systemet ikke ville inneholde data. Disse var datoer vi kom frem til ved å manuelt 

analysere dataene i databasen. Disse tidsperiodene var som følger: 

- 19.05.13 til 22.05.13 

- 10.06.13 til 08.08.13 

- 18.08.13 til 13.01.14 

- 16.01.14 til 24.01.14 

- 27.01.14 til 20.02.14 

Unntaket til denne filosofien var situasjoner der vi hadde for mye data, at det var så mye data å 

prosessere at systembegrensninger hindret oss i å fremvise det. Dette kunne få konsekvenser for 

både hvor store intervaller som kunne velges ut, samt om det i det hele tatt var mulig å bruke 

dataene til dataanalyse (krever data fra store tidsrom for å gi brukbare resultater). 

Problemet med for store datamengder oppsto ved en av de første systemtestene vi utførte. En 

tidsperiode på en time kunne gi mange hundre rader av flyobservasjoner. Problemet oppsto på 

webserveren, som måtte allokere plass til alle disse dataene før de ble sendt videre til klienten. Det 

fantes en grense for hvor mye data man kunne allokere, og denne ble nådd raskt. Det var mange 

mulige løsninger på dette problemet, og vi endte opp med å implementere flere av disse i vårt 

system. 

For det første kunne vi ha flyttet webserveren over til en annen maskin for å ha bedre kontroll på 

slike grenser, eller spøre driftsansvarlig om å øke grensene på webserveren, men mer om dette i 3.4. 

En annen mulighet var å hente ut dataene i "puljer". Altså, man hentet ut litt data av gangen, 

prosesserte det og sendte det videre til klienten, uten at data ble aggregert på serveren. Det viste seg 

at dette ville bli helt nødvendig, også for andre problemstillinger enn minneallokering. Hvordan vi 

implementerte dette er forklart i 3.3.3.3. 

Selv med disse løsningen var problemet fortsatt et faktum: det var for mye data per overflyvning. 

Mengdene var så store at det ble nødvendig å redusere samplingsfrekvensen til systemet. Dette ble 

detaljert i 3.1.2. 

Neste steg var så å få reflektert denne forandringen i dataene som allerede hadde blitt logget til 

databasen før denne systemmodifikasjonen hadde blitt utført. Her oppsto nødvendigheten av å 



45 
 

gruppere fly, som vi dekker i 3.3.6. Etter at muligheten for å gruppere fly var på plass, var det relativt 

simpelt å tynne ut dataene i databasen. 

3.3.2.3 Tynning av databasen 

Behovet for å tynne ut databasen var et faktum etter noen av de tidligste testene vi utførte. 

Databasen inneholdt unødvendig store mengder data, så store at det var problematisk for oss å ta 

dem i bruk. Slik beskrevet i 3.1.2 fikk vi hjelp av den tidligere prosjektgruppen til å forandre på 

samplingsfrekvensen til systemet, slik at hver overflyvning fikk et mer gunstig antall punkter. 

Dette skjedde imidlertid etter at systemet allerede hadde logget data i ca. et halvt år, noe som 

betydde at disse dataene måtte bli tynnet for å reflektere forandringen i samplingsfrekvens. 

Fremgangsmåten for hvordan vi løste dette er beskrevet under. 

Den generelle idéen for hvordan uttynningen foregår er relativt simpel (se Figur 3.3: Forbedret utvalg 

av punkter, i begynnelsen av kapittel 3). Hvis man for eksempel har 100 punkter som oppgjør banen 

til en overflyvning, men man vil ha dette tynnet ut slik at man heller får 25 punkter til sammen, er 

dette en relativt triviell jobb. 
   

  
  , altså skal vi ta med hvert fjerde punkt. Likevel var det ikke så 

rett-frem å utføre en slik forandring. 

Første store problemstilling var hvor denne forandringen skulle utføres. Skulle vi lage et SQL script 

som utførte dette? I så fall hadde vi et problem med hvordan man skulle klare å gruppere punkter til 

en overflyvning med SQL, og deretter klare å iterere over alle disse punktene. Vi bestemte oss for at 

dette kom til å bli unødvendig komplisert, og heller ikke spesielt gunstig da dette var en engangs-

operasjon. Metoden vi valgte å gå for var heller å lage et php-script som hentet ut data fra 

databasen, bestemte seg for hva som måtte slettes, og så produserte en .sql-fil som inneholdt 

DELETE-statements (spesifiserer hva som skal slettes i databasen) for dette. En DELETE-statement per 

flyobservasjon/rad som skulle slettes. Deretter kunne så denne filen eksekveres, og databasen ble 

tynnet ut. 

Da vi valgte å gå for et php-script ga dette oss mye større fleksibilitet med tanke på logikken som 

bestemte hva som skulle slettes. Derfor valgte vi å gå for en relativt sofistikert uttynningsalgoritme. 

Prinsippet var det samme som før, man tok vare på (for eksempel) hver fjerde rad, eller med andre 

ord, sletter 3 rader, så hoppes en rad over, deretter sletter man 3 til, osv. Men noe vi gjerne ønsket å 

få til var å alltid ta vare på første og siste rad, da dette garanterte en bra beskrivelse av flyets bane. 

Problemstillingen oppstår når man både vil få til dette, samtidig som man garanterer at det aldri blir 

mer enn 25 rader igjen for en overflyning etter sletting. De valgte punktene skulle selvsagt også være 

jevnt distribuert (og ikke bare for eksempel de 25 første). 

Uten å gå for nøye til verks (da dette blir forklart i større detalj i kapittel 4), så kan dette greit 

forklares med et eksempel: 

Hvis man har 200 rader som oppgjør en overflyvning, og man bare vil ivareta 4 av disse punktene, 

kan dette gjøres slik: 
   

 
   . Problemet er at dette ikke vil gi en jevn distribusjon. Hvis man 

imidlertid gjør det slik: 
   

   
      , altså at punktene 1, 66, 132 og 198 ivaretas, ser vi at dette er 

jevnt fordelt utover området. Vi valgte deretter å bestemme at sist punkt alltid skulle med, vi bytter 



46 
 

ut 198 med 200. Vi ivaretar disse 4 punktene, og sletter alle andre. Dermed får vi et jevnt utvalg fra 

hele intervallet. 

Til sist skal det nevnes at grensetallet 25 (eller 4 i eksempelet over) er en øvre grense for antall 

punkter som tas med. Hvis en overflyvning hadde mindre enn 25 punkter, ville dette ført til at alle 

punkter ble ivaretatt. Det viktigste var bare å begrense antallet slik at det ikke ble problematisk å 

jobbe med datamengden. Mindre enn 25 punkter ville ikke være et problem for systemet. 

For den fulle beskrivelsen se kapittel 4. 

3.3.3 Dataflyt 

Den komplette beskrivelsen av datastrømmen vil beskrives mer i detalj i kapittel 4, men det er endel 

hovedpunkter anngående hvordan dette foregår som må på plass først. 

3.3.3.1 Dataoverføring, JSON vs. XML 

Data, store mengder data, måtte sendes mellom webserver og klientmaskin, dette var uungåelig. 

Problemet var å finne et passende format. Et format som både innfridde våre behov og var effektivt 

nok til å kunne behandle de datamengdene vi jobbet med. Det var uakseptabelt hvis responstid og 

brukervennlighet ble redusert på grunn av prosesserings- og overføringstid. 

Det ble klart tidlig at vi hovedsakelig hadde to alternativer, JSON og XML. Det var teknisk sett også 

mulig for oss å utforme vårt eget format, men disse var såpass optimale at vi mest sannsynlig ikke 

ville ha klart å utforme et bedre alternativ selv. 

Hovedforskjellen på disse er at JSON er mer kompakt, mens XML gir større fleksibilitet. Spørsmålet 

var om vi trengte denne ekstra fleksibiliteten i vårt system. Svaret var kort og godt nei. De dataene vi 

trengte å overføre var i all hovedsak flyobservasjonsobjekter, et dataobjekt som inneholdt et 

predefinert sett med datafelter. Disse forandret seg aldri fra objekt til objekt, og hadde også verdier 

av samme datatype. Det var nettopp dette JSON var laget for. XML hadde vært relevant hvis de ulike 

attributtene for et dataobjekt kunne variere mellom ulike objekter, men dette var ingen faktor i vår 

situasjon. Altså gikk vi for JSON da det ikke bare var det optimale valget med tanke på "plassbruk", 

men også fordi det var betraktelig enklere å behandle JSON formatet i JavaScript enn det var å 

arbeide med XML. 

3.3.3.2 Alternativer til PHP 

Det var mange mulig alternativer vi kunne bruke istedenfor PHP, som var det mest åpenbare valget 

når det gjaldt skriptspråk for webservere. Vår problemstilling var at vi ikke hadde spesielt mye 

erfaring med de andre alternativene. Det ville også ha tatt tid både å sette oss inn i de andre 

alternativene for å se om de potensielt hadde noen fordeler fremfor PHP, samt tid for å forstå 

språket på et såpass høyt nivå at vi kunne skrive effektiv kode i det. 

Vi bestemte oss derfor for at de potensielle vinstene med alternativer til PHP var såpass usikre, at 

den totale tidsbruken antakelig ikke ville være verdt det. Dessuten hadde alle gruppemedlemmer 

erfaring med PHP fra tidligere, derfor var vi relativt trygge på mulighetene vi hadde med språket. Da 

ingen umiddelbare feil eller mangler meldte seg, gikk vi for PHP uten å undersøke konkurrentene i 

større detalj. 



47 
 

3.3.3.3 Uthenting av data med kontinuerlig printing av JSON 

Slik beskrevet i 3.3.3.1 var JSON var det mest gunstige valget for vårt bruksområde. Likevel kunne det 

oppstå problemer med datamengder, slik beskrevet i 3.3.2.2. Det ble aggregert data på web-serveren 

mens det ble hentet fra databasen, deretter ble alt konvertert til JSON-format, som så ble sendt til 

klienten. Dette lot seg ikke gjøre med store mengder data, da webserveren ikke tillot å allokere nok 

minne. 

Løsningen vi kom frem til, relativt sent i prosjektet, var å kontinuerlig konvertere de uthentede 

dataene til JSON mens uthentingen fra databasen foregikk. Data ble hentet fortløpende fra 

databasen og gruppert i overflyninger (se 3.3.6). Dette ble bearbeidet, umiddelbart konvertert til 

JSON og sendt til klienten. Før neste overflyvning ble behandlet var så disse dataene friet opp, slik at 

det aldri ble allokert store mengder data. Vi unngikk så en av de største og mest kritiske 

problemstillingene i forbindelse med denne type prosjekt, der store data må behandles og overføres. 

Til sist må det nevnes at dette også hadde vært mulig med XML, hvis vi hadde valgt å gå for det 

istedenfor JSON. 

3.3.4 Prosessering av data, server vs. klient 

Slik beskrevet i 3.3.3 går det en datastrøm fra databasen til klienten, via en webserver. Data må 

prosesseres på veien, og hvor denne prosesseringen er mest gunstig å utføre er det vi skal ta for oss i 

dette kapittelet. 

I 3.4 beskriver vi hvor de ulike systemene blir driftet, noe som får store følger for hvor 

dataprosessering bør foregå. Resultatet vi kom frem til var at databasen og webserveren skulle forbli 

på skolens server, frigg. Lys- og flydeteksjonssystemet fortsetter å kjøre på maskinen på 

oppdragsgivers kontor. Dette var ikke optimalt, men akseptabelt etter at disse ble oppgradert (se 

3.1.1). 

Med dette på plass var spørsmålet hva som skulle prosesseres hvor. Dataflyten beskrevet i 3.3.3 

tilsier at alt begynner ved database-serveren på frigg. Dette er dekket i 3.3.4.1. 

Etter dette skal data grupperes, dette kunne vært gjort både på webserveren og på klient-maskinen, 

men vi velger å gjøre dette på serveren. Dette er beskrevet i 3.3.4.2. 

Når databaseserveren og webserveren har gjort sitt står vi så igjen med klient-maskinen, som så står 

for resten av prosesseringen. Dette bringer opp et annen viktig moment når vi snakker om 

prosessering, stress. Hessdalen fenomenet er av internasjonal interesse, så det er ikke utenkelig at 

det potensielt kan bli flere som ønsker å bruke vårt system samtidig. Altså blir det stor pågang på alle 

deler av prosessen. Hva skjer hvis 10 brukere prøver å hente ut data fra databasen samtidig, går 

dette bra? Hva med webserveren? Hva med 100 forespørsler tett oppunder hverandre? 

Slik vår løsning er, vil prosesseringen på serveren nå være relativt "lett". Data hentes ut, gjennomgår 

en relativt enkel prosessering på webserveren, før de så sendes videre til klienten. Slik beskrevet i 

3.3.3.3 blir ikke lenger data aggregert på webserveren mens det behandles, derfor er ikke dette 

lenger en kritisk problemstilling. Både database- og webserveren blir driftet på skolens servere, og 

med den relativt minimale prosesseringen som kreves av dem, burde de kunne takle denne 

pågangen. 



48 
 

Det skal også nevnes at dette blir en engangs-forespørsel til serveren, det er ingen kontinuerlig 

forbindelse tilstedet. Dette gjør at når serveren er ferdig med å behandle forespørselen til en bruker 

så vil den ha helt frie hender når neste forespørsel dukker opp. 

Til sist kommer vi til klienten, som står for all gjenstående prosessering. Dette betyr at antall brukere 

av systemet nå er likegyldig, da prosessering, samme hvor krevende, uansett bare vil gå utover den 

enkelte klientmaskin. 

Da er det eneste som står igjen å forsikre seg om at klienten takler den arbeidsbyrden den nå har 

blitt tildelt. Dette er detaljert i 3.3.4.3. 

3.3.4.1 Prosessering i databasen 

Databasen gir oss de data vi ønsker, men har også mulighet til å manipulere og filtrere disse ved 

uthenting. Dette hentes så inn til vår webserver som kjører på samme server-nettverk (frigg). 

Deretter skal disse dataene prosesseres, konverteres til JSON og sendes til klient-maskinen. 

Det første vi må ta med i bektraktningen er hvilke maskiner som er raskest og mest effektive med 

tanke på prosessering. Det er et faktum at databaseservere er designet fra bunnen av til å være 

effektive på å prosessere data. I tillegg kjører denne database-serveren på skolens servere, som har 

relativt mye ressurser tilgjengelige, og er således godt egnet for prosessering av data. Vi prøver altså 

å overlate så mye prosessering som mulig til database-serveren. 

Desverre har databasen den problemstillingen at SQL er relativt begrenset når det gjelder avanserte 

transformer og prosesseringer. Det er fullt mulig å få til det meste med SQL, men det er relativt 

tungvindt. Et av de største behovene vi hadde med tanke på bearbeiding av data, var å gruppere 

punktene i en overflyvning til et objekt. Desverre var dette vanskelig/umulig å få til med den 

relasjonsdatabasen vi jobbet mot. Det hadde vært mulig å bygget om på strukturen i databasen for å 

gjøre slikt lettere, men da hadde vi samtidig måttet endre på flydeteksjonssystemet til den tidligere 

prosjektgruppen. Dette gjorde vi ikke, slik detaljert i 3.1. 

Noe databaser er usedvanlig godt egnet til er filtrering og sortering av data. Derfor ble begrensninger 

av hvilke data vi hentet ut (for eksempel bare fly innenfor en gitt breddegrad) noe vi overlot til 

databasen. I tillegg gjorde sortering av verdier det mye enklere å gruppere dataene på webserveren. 

Dette er trivielt arbeid for databaser, derfor overlot vi også sortering til databasen. 

Desverre var det begrenset hvor mye vi kunne dra nytte av databasens evner utover dette. 

3.3.4.2 Prosessering på webserveren 

Et viktig poeng å dra frem når det gjelder prosessering på webserveren er gruppering av data. Når 

data grupperes blir det mulig å skille ut redundant informasjon, altså får man mindre data å behandle 

i senere deler av systemet. Dette er hovedsakelig grunnen til at vi valgte å utføre gruppering på 

webserveren, slik at vi slapp å overføre redundant data til klienten. Dette er selvsagt universalt 

positivt. For å forklare hva vi mener med utskilling av redundant data, tar vi for oss et par rader fra 

databasen, se Tabell 3.1: Databasekolonner 2 (kopi av tidligere tabell). 

 

 



49 
 

Tabell 3.1: Databasekolonner 2 

Hexident Postime Flightid Latpos Longpos Track Altitude Osv. 

06A052 1370085739 QTR991 61.48540 11.30859 295 32000  

06A052 1370085774 QTR991 61.51859 11.16329 295 32000  

06A052  1370085796 QTR991 61.53936 11.07198 295 31975  

 

Slik vi ser er dette ett fly i nærheten av Hessdalen, som har blitt plukket opp av sensoren. Hver rad er 

et "punkt" på kartet der flyet hadde dataene vist i de relaterte kolonnene. Vi ser at Hexident og 

Flightid er lik for hele overflyvningen, noe som er logisk å forvente. Et fly vil ha samme id og 

rutenummer for en hel overflyvning. De andre feltene vil imidlertid forandre seg (merk at Track 

tilfeldigvis er lik for alle 3 rader i dette eksempelet, dette er en tilfeldighet). 

Altså kan vi slå sammen alle disse radene til en overflyvning, med de gitte Hexident og Flightid 

verdiene, slik at disse bare oppgis en gang. Disse verdiene er deretter gjeldene for alle tilhørende 

punkter på overflyningen. Vi har altså spart oss for å ta med redundant informasjon, noe som betyr 

at dataene sendt til klienten vil være betraktelig mindre. På denne måten sparer vi prosessorkraft og 

båndbredde både på webserveren, linjen mellom server og klient og klientmaskinen. 

3.3.4.3 Prosessering på klientmaskinen 

Nå som klientmaskinen har mottat sine data, er det essensielt at arbeidsbyrden som har blitt overlatt 

til den er noe den kan takle. 

Dataene som klienten mottar må plottes på et kart, og selve denne jobben, samt manipulering av 

kartet når alle data er tilstedet, er klientens hovedoppgave. Slik detaljert i 3.3.2.2 ble det raskt et 

problem med for store mengder data. Dette klarte vi å løse ved å redusere samplingsfrekvens og 

tynne ut databasen. Etter flere tester var det klart at systemet ble uresponsivt ved store datautvalg, 

men at det fungerte tilfredsstillende innenfor intervallene oppgitt som øvre grense av oppdragsgiver 

(maksimum et par dager). 

Klientmaskinen må hovedsakelig lage ikon-objekter for Google Maps, og binde disse opp mot kartet 

sammen med tilhørende informasjonsvinduer. Informasjonsvinduer inneholder dataene for et ikon 

på kartet (en flyobservasjon). Dette kan ikke kommes utenom, og er akseptabelt selv om det er en 

krevende oppgave. 

En annen problemstilling var hvor nøye flyets rute skulle beskrives. Vi måtte selvsagt illustrere flyet 

der det befant seg i et gitt "øyeblikk" (se 3.2.4.5). Spørsmålet var om vi også skulle illustrere den fulle 

banen til flyet, altså alle punkter på overflyvningen. I tillegg burde disse forbindes med en linje slik at 

sammenhengen var tydelig. Dette ville være relativt krevende, da mange ikoner og linjer måtte vises 

på kartet samtidig.Dette lot seg løse på en gunstig måte, og er beskrevet i 3.2.4.4. 

Den siste store arbeidsoppgaven på klientmaskinen var visning av en såkalt "heatmap", slik beskrevet 

i 3.2.4.1. Dette gir brukeren en samlet oversikt over hvor flytrafikken var mest intens i det valgte 

tidsrommet, og krever at brukermaskinen prosesserer en relativt stort sett med data. Alle 

koordinatsett til flyobservasjoner innenfor et gitt intervall må sendes til en funksjon som lager en 

heatmap basert på disse. Det viste seg imidlertid at dette hadde en uventet positiv effekt. Vårt 

heatmap baserte seg på det samme tidsutvalget som allerede var gjort for kartet. Derfor var det 



50 
 

hovedsakelig snakk om de samme mengdene data, bare fremstilt anderledes. Det var mye lettere for 

maskinen å prosessere og tegne opp et heatmap enn det var å tegne opp individuelle noder og fly. På 

grunn av dette ble heatmap en praktisk måte å plotte store mengder data på, uten at dette tok for 

lang tid. Det en heatmap tegnet på et par sekunder, tok nærmere det tidobbelte når alle noder skulle 

tegnes individuelt. Altså var generasjonen av selve heatmap-en neglisjerbar, og selve fremstillingen 

på kartet var mer effektiv enn det var med ikoner og linjer. 

3.3.5 Analyse av data 

Dataanalysen i vårt prosjekt har to distinkte vinklinger, disse blir dekket i henholdsvis 3.3.5.1 og 

3.3.5.2. 

3.3.5.1 Dataanalyse for effektmålet, forståelse av lysfenomenet 

Den første type analyse er den som har til hensikt å få bedre forståelse for lysfenomenet i Hessdalen, 

altså en del av effektmålet for vår oppgave. Hvis vi kunne introdusere direkte analysemuligheter for 

dette, ville arbeidet til oppdragsgiver potensielt forenkles kraftig. Problemet med et fenomen av 

denne karakteren er at det finnes potensielt uendelig med kilder. Det kan være forårsaket av vær, fly 

kan spille en viktig rolle, kanskje topologien til området er relevant? På grunn av de mange 

muligheten vil fremgangsmåtene for å komme til bunns i dette også være nærmest ubegrenset. Det 

ble meget vanskelig for oss å utarbeide former for analyse som ville være gunstige for arbeidsgiver, 

da dette ville ha krevd mye tid og ressurser fra vår side. Vi måtte prioritere å bli ferdig med oppgaven 

gitt i prosjektbeskrivelsen i førsterekke. 

Et eksempel kunne vært at vi hadde en hypotese om at lavtflyvende fly var relatert til lysfenomenet. 

For å verifisere dette måtte vi ha implementert spesifik funksjonalitet for å fremheve lavtflyvende fly. 

Dette bare for teste en hypotese. 

Alle former for analyse av denne typen ville også vært basert på spekulasjon: "hva hvis X er relatert 

til lysfenomenet". Analysemetoder måtte utarbeides for hvert unikt tilfelle. Da vi ikke hadde noen 

klar oversikt over hva som var interessant å analysere (da dette ikke var en del av vår oppgave), så vi 

det best å gå bort fra denne type analyse. Vi overlot dette heller til fremtidige brukere av systemet, 

som kunne utføre dette manuelt. Vi fokuserte på å legge til rette slik at nødvendige verktøy skulle 

være tilgjengelige for å best mulig kunne utføre denne oppgaven. Ulike teorier kunne dermed 

"manuelt" verifiseres ved hjelp av vårt system. For å gå tilbake til eksemplet over, kunne et problem 

av denne typen nå løses ved å lese av høyde-verdiene for diverse fly. Eneste forskjell var at vi ikke nå 

la til dedikert funksjonalitet for dette. 

3.3.5.2 Dataanalyse for resultatmålet, bedre oversikt over flytrafikken 

Den andre type dataanalyse relevant for vår oppgave, var den som gjorde det lettere å bearbeide 

data om flytrafikken generelt. Et eksempel på dette var å analysere regelmessigheten av flyruter, slik 

at det ble lettere å få oversikt over disse. Dette kunne så brukes som et verktøy for effektmålet i 

ettertid. Et annet eksempel kunne være å analysere uregelmessigheten av fly, altså fly som ikke var 

del av en standard rute. Denne tankegangen hadde imidlertid en fundamental brist i logikken. 

Lysfenomenet i Hessdalen viser seg på tilsynelatende helt tilfeldige steder. Det var altså irrelevant 

hvilken type fly som passerte området, det var irrelevant om det var et regelmessig fly eller ikke. Det 

eneste som var av interesse var om et fly, hvilket som helst fly, var i område på samme tidspunkt som 

lysfenomenet eller ikke. 



51 
 

Dette bringer oss til den typen analyse som viste seg å være mest relevant for vår oppgave, 

sannsynligheten for fly. En stor svakhet ved flydeteksjonssystemet var at dette ikke hadde mulighet 

for å hente inn data om fly som ikke inneholdt den relevante sensoren. Derfor ville det vært meget 

gunstig hvis vi kunne presentere for brukeren en sannsynlighet for fly i et valgt område. 

Flere fremgangsmåter fantes for denne type analyse (se 2.2.4.1). Den beste og mest praktiske å 

implementere var en såkalt heatmap. Altså et slags filter som legges over kartet, som representerer 

intensiteten av fly ved hjelp av farger. Områder som hadde mest flytrafikk innenfor et gitt intervall 

ble gitt en "varmere" farge enn områder der flytrafikken var minimal. På denne måten fikk brukeren 

en approksimasjon for sannsynlighet for fly. Områder med mye flytrafikk ville selvsagt ha større 

sannsynlighet for fly, enn områder med liten flytrafikk. Selve implementasjonen av heatmap ble 

dekket i 3.2.4.1. 

Problemet var hvordan denne løsningen skulle implementeres. Heatmaps har den svakheten at det 

gir en meget generell oversikt. Overblikket brukeren får er ikke nødvendigvis spesifikt nok til å kunne 

hjelpe med å bekrefte eller avkrefte om et fly befant seg i et område på et gitt tidspunkt. Vi vurderte 

muligheten for å la brukeren spesifisere parametere rundt hvilke data som skulle brukes for å lage et 

heatmap. Løsningen vi til slutt endte opp med var at tidsutvalget brukeren gjorde til tidslinjen var det 

samme utvalget som heatmap-en baserte seg på. Slik fikk brukeren full kontroll på tidsintervallet, og 

kunne derfor fritt bestemme hvilke data som skulle brukes. 

Et usikkerhetsmoment sto igjen, og det var hvordan punktene som heatmap-en baserte seg på skulle 

behandles. Databasen inneholder diskrete verdier for en overflyvning, ikke en kontinuerlig "linje". 

Altså kunne for eksempel 25 punkter beskrive en strekning på flere kilometer. Dette kunne i værste 

fall gi en dårlig representasjon av overflyvningen, og derfor også en dårlig heatmap. Vi vurderte 

muligheten for å løse dette ved hjelp av interpolasjon (se 3.2.4.6). På denne måten kunne vi generere 

så mange punkter som vi ønsket. 

Det viste seg imidlertid at en heatmap basert på de diskrete verdiene fra databasen var mer en godt 

nok for vårt bruk, da dette ga et tilstrekkelig bilde av en overflyvning. 

3.3.6 Gruppering av fly i en overflyvning 

Behovet for å gruppere flyobservajoner i en overflyvning ble umiddelbart klart for oss da vi fant ut at 

databasen måtte tynnes, slik beskrevet i 3.3.2.3. Gruppering var også viktig med tanke på hvordan 

dataene ble behandlet på kartet, samt andre mer avanserte funksjoner (slik som å vise stier, se 

3.2.4.4). Hvilke muligheter vi hadde for gruppering er beskrevet i delkapitlene under. 

For å spesifisere nøyaktig hvilken type gruppering det er snakk om, dreier det seg altså om 

gruppering av alle punkter som et fly "etterlater" seg mens det flyr over Hessdalen. Mens flyet 

passerer (i en enkelt overflyvning) vil flysensoren lese av data fra flyet ved regelmessige intervaller, 

disse lagres som separate rader i databasen. Alle disse tilhører en logisk gruppe, en "overflyvning". Et 

fly som kom tilbake senere ville bli behandlet som en separat overflyvning. 

Målet for gruppering er således å bruke dataene fra flyobservasjonene for å finne ut hvilke som hører 

sammen. Deretter kan disse behandles som ett objekt i resten av systemet. 

Vi vurderte flere metoder som kunne ha gjort gruppering meget lettvint. Blant annet å introdusere 

en ekstra kolonne i databasen som identifiserte en overflyvning. Alle disse metodene hadde 



52 
 

imidlertid en stor svakhet, det krevde at vi utførte fundamentale forandringer i 

flydeteksjonssystemet, som så måtte bli reflektert for alle data allerede logget til databasen. Derfor 

måtte problemet løses ved å se på kolonner allerede tilstedet i databasen. 

3.3.6.1 Gruppering ved hjelp av hexident og postime 

Gruppering ved hjelp av hexident og postime vil si at man ser på en hexident (en unik identifikator for 

et spesifikt fly) , samt tidsforskjeller (gitt av postime) mellom ulike observasjoner av dette flyet. Hvis 

man tok for seg alle observasjoner av en hexident, og deretter så på tidsforskjellen mellom disse, 

kunne alle punkter som var innenfor en gitt grense grupperes. Man dannet altså logiske grupper for 

hexident'er som forekom rundt samme tidspunkt, altså overflyvninger. 

Denne løsningen virket lovende, men etter å ha holdt et møte med Dick fra den tidligere 

prosjektgruppen, ble vi klar over en viktig detalj. Det var en liten mellomlanding i nærheten av 

Hessdalen der fly kunne stå på bakken i bare få minutter, før de så fløy videre (nå med et nytt 

rutenummer). Dette tidsrommet kunne være mindre enn tidsforskjellen mellom to punkter på en 

overflyvning. Altså ville en gruppering på denne måten gå glipp av en signifikant hendelse, spesielt 

med tanke på at flyet som tok av fra denne mellomlandingen nå kanskjen hadde en helt ny Flightid 

(et slags rutenummer). Det kunne også bli problematisk å prøve å skille på flightid, da denne (slik 

nevnt i 3.3) ikke var til å stole på. Flightid kunne til tider være "blank". 

Derfor gikk vi bort fra denne tilnærmingen, og så på muligheten for å bruke Flightid, slik beskrevet i 

neste delkapittel. 

3.3.6.2 Gruppering ved hjelp av FlightID 

Denne tilnærmingen hadde en stor problemstilling som gjorde at det nesten umiddelbart ble umulig 

å bruke denne metoden. Flightid-feltet i databasen var et datafelt som i motsetning til hexident 

kunne være "tom". Altså kunne rader i databasen være uten flightid. Vi hadde heller ingen garanti for 

at flightid forble konstant for en overflyvning (spesielt med tanke på feil som kunne oppstå i 

flydeteksjonssystemet). Selv om flightid potensielt sett kunne være ideell for gruppering, var det 

vanskelig å finne en løsning hvis denne manglet data. Disse usikkerhetene førte til at vi raskt gikk bort 

fra å bruke flightid til noe så kritisk som å gruppere data. 

3.3.6.3 Gruppering ved hjelp av hexident og regtime 

Gruppering ved hjelp av hexident og regtime baserer seg på en antakelse, at regtime er tidspunktet 

der systemet lagrer en overflyvning til databasen. Altså at denne er lik for alle flyobservasjoner i 

overflyvningen. Når dette er tilfellet kan så gruppering skje hovedsakelig på regtime, med hexident 

for å skille på overflyvninger som ble registrert nøyaktig samtidig. Hexident er altså en unik 

identifikator på et bestemt fly. 

Det eneste problemet med denne fremgangsmåten er at regtime potensielt kan inneholde små 

variasjoner innenfor en overflyvning. Regtime er et datafelt som blir opprettet når dataene logges til 

databasen, og alle observasjoner som utgjør en overflyvning blir lagret til databasen samtidig. 

Problemet oppstår hvis den interne systemklokken i databasen "tikker over" til et nytt sekund mens 

lagringen utføres. I slike situasjoner vil det altså oppstå et skille i regtime, selv for observasjoner som 

egentlig tilhører samme overflyvning. En liknende problemstilling oppstår hvis flyet er usynlig for 

systemet i et kort tidsintervall (se "LAST_POS_TIMEOUT" i 4.1.3). Hvis dette intervallet er langt nok vil 



53 
 

systemet anta at flyet har forlatt sensorens radius, og overflyvningen blir konkludert og lagret i 

databasen. Deretter dukker flyet opp igjen, men nå blir dette en ny overflyvning. 

Dette var en problemstilling vi effektivt kunne løse ved å "manuelt" sette sammen grupper der 

regtime-verdiene var innenfor en gitt grense. Altså hvis flere observasjoner med samme hexident 

forekom med regtime verdier som var kort tid fra hverandre, ville disse bli satt sammen til samme 

gruppe. 

Regtime feltet genereres av funksjonen "NOW()" i databasen, altså tidspunktet i databasen når 

dataloggingen finner sted. Etter å ha undersøkt denne funksjonen i detalj viste det seg at det var 

sterkt usannsynlig at en overflyvning skulle få ulik regtime på punkter i en sammenhengende 

overflyvning. En del av dokumentasjonen til "NOW()" ser du under: 

"NOW() returns a constant time that indicates the time at which the statement began to execute. 

(Within a stored function or trigger, NOW() returns the time at which the function or triggering 

statement began to execute.) This differs from the behavior for SYSDATE(), which returns the exact 

time at which it executes." (Oracle, 2014) 

Slik vi ser av denne dokumentasjonen så returnerer NOW() tiden da denne funksjonen begynte å 

eksekvere. Vi antar at dette betyr tidspunktet når databasen mottar forespørselen om å lagre en 

overflyvning. Flydeteksjonssystemet overfører alle radene i en overflyvning samtidig, ergo burde 

disse bli tildelt samme regtime, selv om tiden skulle forandres under lagring. 

Det er fortsatt mulig at flydeteksjonssystemet overfører en og en rad, slik at de teoretisk sett kan få 

ulike tidspunkter, men dette er også meget usannsynlig. Databasehåndteringen i deres programkode 

sørget mest sannsynlig for at alle forespørslene overføres som en transaksjon til databasen. Desverre 

var det problematisk å finne ut nøyaktig hvordan dette foregikk uten å ha satt oss grundig inn i 

flyeteksjonssystemet og dets biblioteker. 

Vi undersøkte ikke dette nærmere, da vi likevel ikke kunne være sikre på at alle leddene i prosessen 

var helt nøyaktige. Derfor valgte vi å utforme vår løsning slik beskrevet tidligere, at overflyvninger 

med nærliggende regtime verdier ble slått sammen. På denne måten var vi sikret mot potensielle feil 

som kunne oppstå, uavhengig av system. 

Bruken av hexident og regtime for gruppering var altså vellykket. Disse datafeltene var også meget 

pålitelige. Hexident var del av tabellens primærnøkkel, som automatisk garanterte at denne var unik 

og veldefinert. Regtime ble produsert av en funksjon i databasen, derfor var det også umulig at 

denne kunne føre til problemer. 

3.3.6.4 Oppslag i eksterne systemer 

Det var også en fjerde mulighet for gruppering, som vi i værste fall kunne ty til. Hvis dataene i 

databasen ikke hadde vært tilstrekkelige til gruppering, kunne oppslag i eksterne systemer hjelpe oss 

å finne ut hvilke flyobservasjoner som hørte sammen. 

Vi utforsket ikke denne mulighet i større grad, da vi oppnådde en akseptabel løsning med hexident 

og regtime. Denne muligheten er likevel verdt å nevne, da det antakelig hadde blitt helt essensielt 

hvis regtime-feltet ikke eksisterte i databasen. 

http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_sysdate


54 
 

En slik løsning ville mest sannsynlig ha innebært at nøkkel-verdier fra databasen skulle slås opp i 

eksterne systemer, som kunne gitt os data for å hjelpe med gruppering. Dette ville ført til at 

datauthenting hadde tatt betraktelig mer tid, da forespørsler til eksterne systemer måtte skje for 

hver eneste overflyvning. Det var altså meget gunstig for brukeropplevelsen at vi kunne løse 

problemet på en annen måte. 

3.3.6.5 Hvor grupperingen finner sted 

Etter at grupperingsmetoden var på plass, var spørsmålet hvor dette skulle finne sted. Gruppering av 

data var en relativt tidskrevende prosess. Derfor var det ønskelig at dette foregikk på en del av 

systemet som hadde ressurser nok til å gjøre dette raskt og effektivt. 

Den optimale løsningen ville vært å utføre selve gruppering i databasen. Dette var desverre umulig 

da databasen ikke omhandler objekter, men enkeltrader. I teorien ville det vært mulig å gjort en 

uthenting som gjorde gruppering enklere, men full gruppering ville ikke la seg gjøre. Data måtte 

uansett bli videre prosessert på webserveren før det ble gjort om til JSON format og sendt til 

klienten. Det var dette vi valgte å gjøre. 

Gruppering på webserveren var relativt enkelt, da vi hadde direkte kontroll over 

databaseuthentingene, samt mulighet for mer avansert programmering (noe databasen selv ikke 

støttet direkte). Webserveren var også plassert på en relativt kraftig maskin, slik spesifisert i 3.4.3, 

dermed burde ikke arbeidsbyrden by på problemer. Grupperingen var heler ikke en så krevende 

prosess at det ville føre til problemer ved stor pågang. Derfor valgte vi å utføre datagrupperingen på 

webserveren. 

Det skal også nevnes at det var mulig å gruppere data på klientmaskinen, men dette hadde 

hovedsakelig to store problemstillinger. For det første måtte data enten hentes direkte til klienten, 

eller så måtte det sendes fra webserveren ugruppert. En direkte forbindelse ville betydd at 

klientmaskinen hadde login-informasjon til databasen, noe som var uakseptabelt. Problemet med å 

overføre ugrupperte data var at dette førte til unødvendig bruk av båndbredde. Gruppering på 

webserveren førte til at redundante data som hexident (lik for alle punkter på overflyvningen) bare 

ble oppgitt en gang, og deretter var gjeldende for hele overflyvningen. Beste løsning var altså å 

utføre gruppering på webserveren. 

 

3.4 Plassering og drifting av systemer 
Vår løsning omfattet tre ulike systemer, alle disse utførte relativt krevende arbeid. De kommuniserte 

også seg imellom. Det var mange muligheter når det gjeldt hvilke maskiner disse skulle kjøre på, og vi 

måtte bestemme oss for hvilken plassering som ville bli mest gunstig for hvert enkelt system, og for 

helheten. 

3.4.1 Database 

Da prosjektet begynte kjørte databasen på frigg.hiof.no, en server som driftes av høgskolen. Da 

databasen kontinuerlig ble fylt opp med informasjon, og data aldri ble slettet, var vi avhengige av at 

lagringsmediumet kunne utvides hvis dette skulle bli et problem. Det var altså viktig å tenke på at 

serveren som hostet databasen ble overvåket og vedlikeholdt regelmessig. Dette oppnådde vi 

enklest ved å la databasen forbli på skolens server. Skolen var ansvarlig for å holde serveren ved like, 



55 
 

som første til at eventuelle nødvendigheter, slik som utvidelse av lagringsmedium, var noe som 

automatisk ville bli tatt hånd om.  

Eventuelle systemfeil som førte til at databasen ble utilgjengelig ville også bli raskt løst når vi lot 

databasen bli driftet på skolens server. Hadde vi flyttet databasen til den dedikerte maskinen på 

arbeidsgivers kontor, kunne det potensielt ta måneder før dette ble løst. Hele vårt system ville så 

blitt utilgjengelig i denne perioden. Det skal også nevnes at denne maskinen hadde ansvar for 

lysdeteksjonssystemet, et system som utførte krevende bildeanalyseoppgaver. I tillegg var 

flydeteksjonssystemet også plassert på denne maskinen. Altså var beste valg å la databasen forbli på 

frigg. 

3.4.2 Flydeteksjonssystem 

Fly- og lysdetksjonssystemene kjørte på en dedikert maskin på oppdragsgivers kontor. Denne ble 

sjeldent vedlikeholdt. Disse var to helt separate systemer, men begge var allerede tett integrert med 

maskinen de kjørte på. Lysdeteksjonssystemet utførte relativt tunge bildeanalyseoperasjoner flere 

ganger i sekundet. Dette systemet hadde også problemer med en minnelekkasje, som gjorde at hele 

maskinen som drev begge systemer kræsjet regelmessig. Dette var ikke en optimal løsning. Da vi 

snakket med den tidligere prosjektgruppen kom det frem at de opprinnelig ønsket at systemet skulle 

driftes på Frigg (skolens server), men dette var ikke mulig å få til. Ved et senere tidspunkt gikk den 

tidligere prosjektgruppen inn i systemet for å prøve å løse disse problemene, se 3.1.2 for en 

forklaring på hva dette innebar. 

Etter at systemet hadde blitt forbedret konkluderte vi med at det var uoptimalt å hoste dette 

systemet på maskinen på oppdragsgivers kontor, men dessverre var det ingen annen mulighet. 

Dessuten var løsningen mer akseptabel, nå som systemet hadde blitt forbedret. Eventuelle feil ville 

også bare gå utover flydeteksjonssystemet, ikke vårt eget system (med unntak av datamangel i 

perioder der systemet var nede). Selv om dette systemet sluttet å fungere, ville fortsatt vårt system 

fungere som normalt, fordi det bare baserte seg på dataene fra databasen, samt webserveren. 

3.4.3 Webserver 

Plassering av webserver var den vanskeligste problemstillingen med tanke på hva som ville være 

mest gunstig. Dette var hovedsakelig fordi vi hadde et problem med å hente ut de store mengdene 

data som systemet vårt arbeidet mot. Ved prosjektstart ble vi tildelt plass på skolens webserver, 

frigg. Altså samme server som databasen kjørte på. På grunn av dette hadde vi lite kontroll over selve 

webserveren. 

Vi vurdert derfor å flytte dette over til samme maskin som flydeteksjonssystemet, for å få full kontroll 

på webserveren. Likevel, slik beskrevet i forrige delkapittel, så var antakelig ikke dette en god ide. 

Dette var fordi problemene med lysdeteksjonssystemet, og generelt dårlig vedlikehold av maskinen, 

gjorde dette for ustabilt til at dette kunne være en varig løsning.  

Hessdalenfenomenet er også av potensiell internasjonal interesse, noe som kan føre til perioder med 

store mengder trafikk. Hvis vårt system var ustabilt, kanskje regelmessig, ville dette være uegnet til 

bruk på et webområde som dette. 

Derfor var det altså klart at vi måtte gå for en mer stabil webserverløsning. Spørsmålet var om vi lot 

websiden forbli på frigg, eller om vi så etter andre leverandører. Vi bestemte oss for å bruke frigg, da 



56 
 

dette var en stabil server vedlikeholdt av skolen. Hvis det skulle vise seg å bli problemer i fremtiden 

kunne websiden lett flyttes. Merk også at vår side potensielt kunne bli innlemmet i 

hovedwebområdet for Hessdalen. Derfor utarbeidet vi vår løsning slik at den lett kunne flyttes i 

ettertid. 

Problemet vi deretter måtte ta hensyn til var at vi nå hadde begrenset kontroll på webserveren. Et 

problem med minneallokering oppsto raskt. Webserveren tillot ikke allokering av de store mengdene 

data som vårt system arbeidet med. Vi fikk økt denne grensen ved å ha snakket med driftsansvarlig 

for frigg, som gjorde at vi nå kunne hente ut betraktelig mer data. Desverre var det ikke sikkert at 

denne løsningen var permanent, derfor endte vi blant annet opp med å tynne ut dataene i 

databasen. Dette ble dekket i detalj i 3.3.2.2. 

Problemet med dataallokering løste seg imidlertid da vi oppdaget muligheten for kontinuerlig 

printing av JSON, slik beskrevet i 3.3.3.3. Dette gjorde at data aldri ville bli aggregert på webserveren 

utover en enkelt overflyvning, derfor var vi nå trygge på å aldri nå grensen for minneallokering. 

En siste problemstilling vi sto ovenfor var hvordan webserveren ville tåle stor pågang, med tanke på 

at blant annet gruppering av data og liknende ble prosessert av serveren. Ville dette føre til 

problemer hvis for mange klienter aksesserte serveren samtidig? Frigg er en server som har ansvaret 

for å hoste mange systemer ved høgskolen, derfor var det sannsynlig at denne vile tåle eventuell stor 

pågang. Det var nettopp derfor frigg var et ideelt valg for webserveren, da den var designet for å 

håndtere slik pågang. Vi valgte altså å la webserveren være på frigg, men med den forutsetningen at 

vi måtte ruste vårt program for å takle potensielle feil som kunne oppstå, slik at ikke vårt system 

sluttet å fungere hvis en eventuelle grense ble nådd. Til gjengjeld for at vi tok i bruk en webserver vi 

ikke selv kunne administrere, var dette en stabil server som ville bli vedlikeholdt selv etter at vårt 

prosjekt konkluderte. 

I ettertid, da produktet var ferdig utviklet, ble systemet integrert med hovedsiden for 

Hessdalenprosjektet, Hessdalen.org. Vi regnet med at denne hadde minst like god kapasitet som 

frigg, og dermed ble dette bare en detalj som ikke ga utslag på ytselsen. 

 

3.5 Arbeidsmetode 
Da programmering var en vesentlig del av vårt prosjekt, var det viktig å legge til rette for at dette 

kunne skje mest mulig effektivt. Derfor var det å utarbeide konkrete arbeidsmetoder helt kritisk for å 

få et vellykket prosjekt. 

3.5.1 Versjonshåndtering 

To alternativer som ble presentert for oss var Git og SVN, der SVN var i overkant simplistisk og Git i 

overkant komplekst med tanke på vår arbeidsmetode (se 3.5.2). 

Løsningen vi valgte å gå for var Mercurial (med klienten TortoiseHg) (TortoiseHg, 2014). Denne hadde 

et gruppemedlem hatt erfaring med tidligere, derfor var vi sikre på at programvaren dekket de 

behovene vi hadde for vårt prosjekt. Mercurial var også en løsning der hver bruker hadde sitt eget 

lokale repository (se 2.5.1), noe vi spesifikt ønsket av løsningen. Det var heller ikke like problematisk 

som Git med tanke på brukervennlighet. Derfor var Mercurial er en god balanse mellom Git og SVN, 

og perfekt for våre behov. 



57 
 

3.5.2 Delegering av arbeidsoppgaver 

Programmering har den problemstillingen at det kan være vanskelig å delegere ut arbeidsoppgaver, 

da det ofte krever en helhetlig oversikt over systemet for å kunne utarbeide en løsning. Det er også 

viktig å ta med i betraktningen at potensielle feil i et ledd av programkoden kan ha katastrofale 

konsekvenser for andre deler av systemet. Samt at deler av programmet kan anta visse ting om 

andre deler, noe som byr på problemer hvis disse antakelsene viser seg å ikke bli innfridd. 

Altså er det konseptuelt problematisk å dele opp programmeringsarbeid, så sant det ikke er snakk 

om frittstående deler som kan utvikles separat. Vår løsning var en enkelt webside, der det var 

problematisk å dele opp arbeidet på en gunstig måte. Dette var i hovedsak fordi behandling av data 

fra databasen, og hvordan dette ble vist frem, var den største (og nesten enerådende) delen av 

arbeidet. Hvert ledd i kjeden var tett knyttet sammen, slik at det nærmest var umulig å utarbeide 

disse delene individuelt. Hvert ledd av utviklingsprosessen måtte ha vært klart definert og testet før 

neste del kunne fungere, og forandringer i konsepter (som var uunngåelig i lengden) ville få 

konsekvenser for hele prosjektet - alle andre ledd. Hvis disse delen ble utarbeidet separat, ville det 

bli enormt komplisert og forandre og integrere disse. 

Vi valgte å løse denne problemstillingen ved å hovedsakelig overlate programmeringsarbeid til ett 

gruppemedlem. Løsninger ble utformet i fellesskap, men selve implementasjonen ble utført av en 

person. Ved hjelp av versjonshåndteringen beskrevet i delkapittel 3.5.1, var det lett for alle 

gruppemedlemmer å holde følge med utviklingsprosessen, selv om man selv ikke aktivt arbeidet på 

koden. På denne måten var alle tett involvert i utviklingsprosessen, men vi slapp problemstillinger 

med delegering av programmeringsjobber til flere gruppemedlemmer. 

Da vi hovedsakelig hadde en person som jobbet med implementasjonen av programmene, hadde vi 

mulighet til å effektivt arbeide med rapport og liknende samtidig som programmene ble utviklet. Vi 

fikk altså en situasjon der vi konstant hadde fremgang i prosjektet, mens vi på samme tid fikk loggført 

det nøye (se delkapittel 3.5.3). Det meste av arbeidet foregikk som gruppearbeid, slik at alle var 

tilgjengelig for spørsmål, forslag osv. i de ulike fasene av prosjektet. Når det gjaldt konseptuelle 

problemstillinger som måtte løses, slik som hvordan vi skulle gruppere data (se 3.3.6), ble disse som 

oftest utarbeidet på et møte med alle tilstedet. På denne måten fikk vi oversikt over alle muligheter 

med bidrag fra alle gruppemedlemmer, og alle var til en hver tid klar over statusen til prosjektet.  

3.5.3 Loggføring av arbeid 

Prosjektet strakk seg over flere måneder med arbeid, og alt arbeidet skulle resultere i en 

hovedrapport sammen med sluttproduktet vårt. Denne hovedrapporten skulle inneholde en detaljert 

beskrivelse av alt arbeidet som hadde skjedd i prosjektet. Derfor var det viktig å loggføre arbeidet 

grundig, slik at dette lett kunne innarbeides i hovedrapporten senere. En av de viktigste formene for 

loggføring i vårt prosjekt var issue tracking, altså en oversikt over arbeidsoppgaver i 

programløsningen vår. Se 3.5.3.1. 

3.5.3.1 Issue tracking 

Vi bestemte oss for å bruke Mercurial for versjonshåndtering, da det inneholdt den funksjonaliteten 

vi hadde behov for. Det var også enklere hvis administrasjon av issues og versjonshåndtering ble 

behandlet av det samme systemet. Selve funksjonaliteten til Mercurial var også riktigere for vårt 

prosjekt enn de andre løsningene vi så på. Dette hadde både med brukervennlighet, tekniske 

muligheter og støtte for eksportering å gjøre. Mercurial lot oss raskt og enkelt binde commits (en 



58 
 

forandring i koden) opp mot et pågående issue i Bitbucket. Mulighetene for å opprette og behandle 

issues var også bedre i Mercurial. 

3.5.3.2 Møtereferater 

I løpet av prosjektet har det selvsagt vært mange møter. Disse var hovedsakelig delt i to ulike typer, 

møter med oppdragsgiver/prosjektveileder og interne møter for gruppen. 

Disse var begge på samme format, men hadde to meget ulike hensikter. Møtene med oppdragsgiver 

og prosjektveileder var hovedsakelig for å administrere gangen i prosjektet, og for å få vite 

oppdragsgivers ønsker angående problemstillinger. Altså for å legge en plan for videre arbeid i 

prosjektet. 

De andre møtene som var internt for vår gruppe ble mer som en arbeidslogg for hvordan vi hadde 

angrepet problemstillinger, og hvilke løsninger vi hadde kommet frem til. På denne måten hadde vi 

til en hver tid oversikt over hendelser som forekom, selv med møter som bare var diskusjoner internt 

i gruppen. 

3.5.3.3 Fortløpende hovedrapportskriving 

Senere i prosjektet, etter at vi hadde kommet godt i gang med selve implementasjonen av 

sluttproduktet, begynte vi å arbeide aktivt på sluttrapporten. På denne måten hadde vi et ferdig 

rammeverk, der hendelser i prosjektet kunne settes direkte inn etterhvert som de oppsto. Dette 

gjorde det lettere å innarbeide informasjon inn i rapporten. Rapporten ga også alle 

gruppemedlemmer en detaljert oversikt over prosjektets status så langt, samt en oversikt over 

arbeidet som gjennsto. 

Alternativet hadde vært å utarbeide hele rapporten mot slutten av prosjektet, noe som hadde ført til 

at hele rapportstrukturen med innhold måtte lages samtidig. Og da dette selvsagt hadde forekommet 

flere måneder etter prosjektstart, ville det blitt vanskelig å få dekkende beskrivelser av hendelser fra 

tidligere i prosjektet. Ved å heller arbeide med hovedrapporten under store deler av prosjektet, ga 

det også en mer jevn presentasjon av forløpet, og ikke bare den siste tiden. Dette gjorde det også 

mulig å presentere de ulike mulighetene vi hadde for å løse diverse problemstillinger, og ikke bare 

den løsningen vi valgte å gå for. Resultatet ble kapittel 2 og kapittel 3 slik de er utformet i denne 

rapporten. 

3.5.3.4 Timetall 

I løpet av prosjektet førte vi også en kompakt oversikt over alle arbeidstimer i løpet av prosjektet. 

Dette inneholdt en kort beskrivelse av gjøremålene på en gitt dag. Vi valgte å gjøre dette slik at vi 

internt i gruppen hadde en lett tilgjengelig oversikt over prosjektets gang. Det ble lett å få en oversikt 

over prosjektet i retrospekt og danne seg en overordnet oversikt over alt som hadde hent. 

3.5.4 Programmeringsfilosofi 

Da vår oppgave i all hovedsak var basert på ønsker og tilbakemeldinger fra oppdragsgiver var det ikke 

utenkelig at forandringer kunne oppstå i forhold til den opprinnelige planen. Derfor ville 

programmering etter fossefall-prinsippet ikke være gjennomførbart. Vi valgte derfor å basere oss på 

en iterativ prosess, med regelmessige forandringer av systemet, hvis situasjonen krevde dette. 

Systemet ville bli testet og modifisert regelmessig, slik at det til enhver tid var mulig å innarbeide nye 

krav som måtte oppstå. Dette var også spesielt viktig med tanke på detaljene i 



59 
 

flydetekesjonssystemet. Hvis det ble nødvendig å modifisere systemet på grunn av en uforutsett 

problemstilling, var dette nå fullt mulig. 

I tillegg til dette utarbeidet vi noen generelle retningslinjer for programmering. Under arbeidet tok vi 

sikte på å gjøre koden kortfattet. Vi hadde som mål å være relativt pragmatiske uten å lempe for mye 

på idealer og "regler" for programmering, å kategorisere koden på en logisk måte, og å forsøke å 

gjøre den så lesbar som mulig. 

Vi satt opp noen interne retningslinjer for koding. Disse vektla blant annet: 

- Navngivning av funksjoner eller variabler som brukes flere ganger: 

Disse navnene skulle være så klare og intuitive som mulig, uten å bli for lange. 

- Retningslinjer for kommentarer: 

Vi antok at lesere var lesekyndige i de aktuelle språkene og forklarte kode der det ble ansett 

som nødvendig, men kommenterte ikke "blindt" kode der navngivning og struktur gjorde 

virkemåten innlysende. 

- Hvordan kode skulle formateres og indenteres: 

Vi indenterer koden konsekvent med 4 mellomrom per blokk, og brukte ikke TAB-tegnet (\t). 

Klammeparenteser ble plassert i henhold til konvensjoner i de forskjellige språkene, der disse 

var tilgjengelige. Whitespace ble ikke brukt kun i blokksammenheng, men også for å gjøre 

mindre, logiske skiller i kodelinjer tydeligere. 

- Hvordan versjonskontroll skulle brukes: 

Forandringer burde committes når de var "atomiske", frittstående endringer.  

  



60 
 

4. Implementasjon 
 

I dette kapittelet gir vi en grundig oversikt over de ulike delene av vårt system, og hvordan disse 

henger sammen. Her er det mange ulike typer kode som kjører på de ulike systemene vår løsning 

omfatter, vi kommer ikke til å beskrive alle disse separate delene i detalj. Det er imidlertid flere 

hovedelementer som er kritiske for vårt system, samt flere mindre funksjoner og liknende som 

utfører mer avanserte arbeidsoppgaver. Disse delene vil vi gjerne forklare grundigere, da de ikke 

nødvendigvis er forståelige ved første øyekast, eller at de generelt er viktige å belyse for forståelse av 

systemet som helhet. I slutten av kapitlet finnes en total oversikt over alle deler av systemet, og 

hvordan disse er integrert med hverandre. 

 

4.1 Flydeteksjonssystemet 
Flydeteksjonssystemet som ble satt opp av den tidligere prosjektgruppen var et relativt omfattende 

system vi valgte å ikke sette oss nøye inn i. Likevel gir vi her en kort oversikt over hvordan dette 

systemet var utformet, da dette gir kontekst for vårt system. 

4.1.1 Systemoversikt 

En oversikt over flydeteksjonssystemet, samt hvordan dette henger sammen med vårt system, ser du 

i Figur 4.1: Systemoversikt. Merk at produktet ble integrert med hovedsiden for Hessdalenprosjektet 

etter at prosjektet var ferdig. Dette betyr at webserveren ikke lenger er plassert på frigg.hiof.no. 

Dette hadde likevel liten innvirkning på ytelsen og funksjonaliteten til vårt produkt, og er således ikke 

tatt hensyn til i systembeskrivelsen.  

  



61 
 

 

Figur 4.1: Systemoversikt 

 

Formålet med systemet er at sluttbrukeren kan sammenlikne lysobservasjoner i 

lysdeteksjonssystemet med flyobservasjoner fra flydeteksjonssystemet, via vårt grensesnitt. 

Slik vi ser av figuren, er både fly- og lysdeteksjonssystemet plassert på samme maskin, her kalt "VM 

Host". Dette er den dedikerte maskinen plassert på oppdragsgivers kontor, som kjører 

operativsystemet Linux. Denne maskinen inneholder en virtuell maskin med Windows, derav navnet. 

Lysdeteksjonssystemet fungerer uavhengig av flydeteksjonssystemet, og er bare direkte relevant i vår 

oppgave da en systemsvikt potensielt kan påvirke resten av maskinen - flydeteksjonssystemet. 

Flydeteksjonssystemet, slik vi ser av figuren, henter inn data om overflyvninger fra flysensoren 

plassert på Hessdalen Automatic Measurement Station (AMS). Deretter blir disse dataene dekodet 

ved hjelp av et program som kjører på den virtuelle maskinen på VM-host, for så å bli logget til 

databasen. Det skal nevnes at data ikke vil bli umiddelbart lagret til databasen. Dataene for en 

pågående overflyvning vil aggregeres til flyet ikke lenger kan oppdages av sensoren, deretter lagres 

alle data for overflyvningen på en gang. 

Deretter kommer vårt system inn i bildet, da vi utelukkende arbeider mot databasen. Dette blir 

beskrevet senere i kapittel 4, og omfatter både prosessering på databasen, webserveren og på 

maskinen til sluttbrukeren. 

 



62 
 

4.1.2 Svakheter 

Slik beskrevet i tidligere kapitler var lys- og flydeteksjonssystemene utformet på en problematisk 

måte. For det første var lysdeteksjonssystemet et relativt krevende system, som arbeidet konstant 

med tyngre bildeanalyseoppgaver. Eventuelle problemer med dette systemet ville gå direkte utover 

flydeteksjonssystemet. Dette var imidlertid noe vi bare måtte akseptere. 

En annen problemstilling, som også ble beskrevet av den tidligere prosjektgruppen, var dekoderen. 

Maskinen som flydeteksjonssystemet kjørte på var en Linux maskin, men det var nødvendig med et 

proprietært dekoderprogramvare for å tolke meldingene sendt ut fra flyene. Dette programmet var 

et Windows program, og dermed ble det nødvendig med en virtuell maskin. Denne løsningen var ikke 

optimal. Desverre var dette noe de ikke kunne kom utenom, da de ikke hadde tilstrekkelig med 

dokumentasjon for lage en egen løsning for å dekode flymeldingene. Dette var likevel en viktig 

faktor, da potensielle problemer kunne oppstå i både dekoderen og den virtuelle maskinen, feil 

utenfor vår kontroll. Hvis dette skulle feile, ville ikke flydeteksjonssystemet lenger kunne bearbeide 

data fra flysensoren, disse ville så gå tapt for alltid. Denne maskinen ble heller ikke vedlikeholdt 

regelmessig. Derfor ville eventuelle feil og svikter i systemet kunne gå uoppdaget over lengre tid. 

Disse var alle svakheter vi måtte ta hensyn til i vår løsning, for å kunne redusere eventuelle 

konsekvenser dette ville få for vårt system. En av de fremste måtene vi oppnådde dette på var å 

utelukkende forholde oss til databasen, som var "trygt" driftet på skolens egen server. Dette, samt 

vårt valg om å abstrahere oss fra detaljene og virkemåtene til disse systemene, førte til at vi kunne 

fokusere på vår løsning i første rekke. 

Til sist skal det nevnes at bare fly som inneholder senderen som flydeteksjonssystemet arbeider mot, 

vil bli oppdaget av dette systemet. Alle andre fly vil være usynlige for sensoren, og vil således ikke 

dukke opp i vårt system. 

4.1.3 Samplingsfrekvens 

Vi skal ikke gå i detalj i flydeteksjonssystemet, men en viktig konfigurerbar parameter må nevnes. 

Da vi begynte å hente ut data fra databasen viste det seg raskt at det var betraktelig flere punkter per 

overflyvning enn hva vi hadde bruk for i vårt system. Det var også problematisk å behandle de 

enorme datamengdene. Derfor ble det nødvendig å gjøre en forandring i flydeteksjonssystemet for å 

redusere antall punkter som ble lagret for en overflyvning. Resultatet av dette ble en justerbar 

parameter i en konfigurasjonsfil i flydeteksjonssystemet. På maskinen som hoster systemet er denne 

filen plassert her: /home/hessdalen/flight/flight.cfg 

Innholdet i denne filen finner du i Figur 4.2: Konfigurasjonsfil, flydeteksjonssystem (noe informasjon 

er obfuskert). 

Figur 4.2: Konfigurasjonsfil, flydeteksjonssystem  

 
# Configuration file for flight detection. 
# 
DB_HOST_IP = frigg.hiof.no                   # MySQL server address 
DB_HOST_PORT = 3306                      # MySQL server port 
DB_NAME = ---                         # Database name 
DB_USER = ---                         # Database user name 
DB_PWD = ---                          # Database user password 
#                                        # 



63 
 

LOG_FILENAME = ./errorFile.log           # ./ for Linux, .\ for Windows 
#                                        # 
LAST_POS_TIMEOUT = 60                    # Timeout in seconds, Save to db when 
#                                        # flight out of sight for more than x seconds. 
#                                        # 
BASESTATION_IP = 127.0.0.1          # Base station PC's address 
BASESTATION_PORT = 30003                 # Base station port 
# 
MAX_POS_REGS_PER_TRACK = 25 
# 
VERBOSE = 0                             # Write extra information to errorLog 

 

Slik vi ser er det nær slutten av filen en innstilling kalt "MAX_POS_REGS_PER_TRACK". Denne er satt til 25, 

den minste mulige verdien støttet av systemet. Denne verdien forsikrer at en overflyvning aldri vil 

inneholde mer enn 25 punkter, slik at mengden data blir begrenset. 

Dette påvirker imidlertid bare nye data, da det som allerede er logget til databasen vil beholde den 

"oppløsningen" det hadde fra før. Derfor ble det nødvendig å tynne ut databasen selv etter at denne 

forandringen hadde blitt implementert i systemet. Dette er foklart i 4.3.1. 

Til sist må også "LAST_POS_TIMEOUT" nevnes. Slik beskrevet i filen er dette tidsintervallet systemet 

venter før systemet antar at flyet har forsvunnet fra sensoren, og overflyvningen blir konkludert og 

sendt til databasen. 

 

4.2 Database 
Databasen var en sentral del av vår oppgave, da hele vår løsning måtte tilpasses formatet dataene 

var definert på. I dette kapittelet gir vi defor en grundig oversikt over hvordan databasen er definert, 

samt hvordan datafeltene blir opprettet. 

Databasen er delt inn i rader og kolonner. En rad representerer et punkt på en overflyvning (en 

flyobservasjon), med de assosierte dataene. Et fly vil altså ha en høyde, en posisjon, en rotasjon, etc. 

ved en gitt logging til databasen. Disse datafeltene utgjør så kolonnene i databasen, som er den 

samme for alle overflyvninger. 

Et utsnitt fra databasen finner du i Tabell 4.1: Eksempeldata, ulike fly, her er hver rad et 

øyeblikksbilde fra et enkelt fly fanget opp av sensoren i Hessdalen. Flere slike rader/flyobservasjoner 

oppgjør så en overflyvning av et bestemt fly. 

  



64 
 

 

Tabell 4.1: Eksempeldata, ulike fly 

hexident postime flightid latpos longpos track speed altitude verticalrate incam Regtime 

4CC2AD 1398765590 ICE306 60.86649 10.36756 103 486 37000 -64 0 2014-
04-29 
12:02:10 

4CC2AD 1398765606 ICE306 60.85695 10.43888 103 487 37000 -64 0 2014-
04-29 
12:02:10 

4CC2AD 1398765617 ICE306 60.85085 10.48806 103 487 37000 64 0 2014-
04-29 
12:02:10 

47A619 1398765228 NAX375 62.54672 11.91427 176 450 35975 64 0 2014-
04-29 
11:59:10 

47A619 1398765239 NAX375 62.52328 11.91762 176 452 35975 128 0 2014-
04-29 
11:59:10 

47A619 1398765250 NAX375 62.50108 11.92078 176 451 36000 64 0 2014-
04-29 
11:59:10 

 

Her ser vi altså et lite utsnitt av to ulike overflyvninger oppdaget av flydeteksjonssystemet. De første 

3 radene omhandler et fly med id (hexident) 4CC2AD. Dette er altså den fysiske adressen på 

senderen som gir ut disse meldingene, og som er plassert inne i flyet. Postime er tidspunktet (i unix 

time) da flyet sendte ut denne meldingen, med den relaterte informasjonen. Vi ser her at tre av disse 

meldingene forekom med korte mellomrom, det var bare snakk om noen få sekunder. Deretter ser vi 

en ny overflyvning, denne gangen et fly med id 47A619. 

Innholdet i de ulike kolonnene er beskrevet i detalj under, med eksempeldata tatt fra den nederste 

raden i figuren over. 

Hexident: 47A619 

- Dette er den fysiske adressen til senderen plassert inne i flyet. Dette er en helt unik 

identifikator som ikke vil bli brukt av noen andre fly (med untak av sendere som fysisk flyttes 

til andre fly), derfor blir dette indirekte en identifikator på selve flyet. 

- Denne vil alltid bestå av 6 heksadesimale tall, og er påkrevd av flydeteksjonssystemet. Hvis 

dette datafeltet ikke kan tolkes fra meldingen sendt ut fra flyet, vil meldingen bli forkastet. 

- Hexident er således også en del av primærnøkkelen i databasen, altså et datafelt som er med 

på å gi en unik identifikator på en rad i databasen. Dette impliserer også at dette datafeltet 

MÅ spesifiseres (det kan ikke være null). Altså er dette et meget pålitelig datafelt. 

Postime: 1398765250 

- Postime er tidspunktet da flyet sendte ut denne spesifike meldingen med de relaterte 

dataene. 

- Dette er et heltall som oppgir tidspunktet i unix time, altså antall sekunder fra klokken 

00:00:00 den 1. januar 1970 UTC (/GMT). 



65 
 

- Postime er den andre halvdelen av primærnøkkelen, sammen med hexident. Dette betyr 

altså at tidspunktet for en melding sendt ut av et fly og hexidenten for flyet, sammen er unikt 

og identifiserende for en rad i databasen. 

- Postime er del av primærnøkkelen, og er derfor et pålitelig datafelt som uten problem kan 

brukes i vårt system. 

Flightid: NAX375 

- Dette er en identifikator på en overflyvning, og fungerer som et slags rutenummer. Lengden 

på flightid varierer fra 3 til 8 tegn, der de første 3 tegnene ofte representerer et flyselskap 

slik som "NAX" og "SAS". 

- Flightid blir tildelt av flyselskapet som har ansvar for flyet, og det er til en viss grad 

identifiserende for en overflyvning. 

- Da vi begynte å undersøke mulighetene for gruppering av fly viste det seg imidlertid at dette 

datafeltet ikke var pålitelig nok. Det største problemet med dette datafeltet var at det ikke 

var veldefinert på samme måte som hexident. Flightid kunne nemlig være en tom tekststreng 

(""). Altså helt uspesifisert. Dette gjorde at denne kolonnen ikke kunne tas i bruk når det 

gjaldt behandling av data, og ville dermed bare bli brukbar når det gjaldt direkte fremvisning 

til sluttbrukeren. 

Latpos og Longpos: 62.50108, 11.92078 

- Dette var flyets latitude (breddegrad) og longitude (lengdegrad) ved det angitte tidspunktet 

(postime). 

- Disse datafeltene var helt kritisk for utformingen av vår oppgave, da det ville blitt umulig å 

plassere ikoner på kartet hvis det manglet koordinatdata. Derfor måtte alle data som ikke 

hadde brukbare koordinater forkastes av vårt system. 

- Merk at databasen støttet relativt høy nøyaktighet for disse datafeltene, men at disse 

dataene aldri ble spesifisert med høyere enn fem desimalers nøyaktighet. 

- Databasen tillater ikke at disse verdiene blir satt til null, men det var forekomster av 

flyttalsverdier meget nære 0 (j.fr. Track). Verdier som dette filtrerte vi ut i vårt system. 

Track: 176 

- Track, med sitt noe missvisende navn, er flyets orientering (/rotasjon) ut fra 360 grader. 0 

grader tilsvarer nord, mens 90 grader er øst. 360 grader blir aldri brukt av systemet, da dette 

isteden vil være 0 grader. 

- Dette, i likhet med de neste tre datafeltene, var ikke alltid tilgjengelig, slik at verdien ble satt 

til 0 hvis de manglet. Merk at dette overlapper med fly som faktisk hadde en vinkel på 0 

grader. 

Speed: 451 

- Dette oppgir flyets fart. 

- I likhet med track blir dette satt til 0 hvis disse dataene ikke var tilgjengelige. Merk at dette 

ikke er en problemstilling i vår oppgave, da et fly aldri vil ha en fart lik 0, da ville flyet ha stått 

stille. Dette er ikke mulig utenom tider der flyet står på bakken (utenfor rekkevidden til 

flydeteksjonssensoren). 



66 
 

Altitude: 36000 

- Dette er flyets høyde, gitt i meter over havet. 

- Denne verdien ble satt til 0 hvis dataene var utilgjengelige. På samme måte som Speed, var 

ikke dette en problemstilling. En høyde lik 0 meter kunne bare forekomme hvis flyet sto på 

bakken ved hav-nivå, eller hvis det hadde nødlandet i havet. 

Verticalrate: 64 

- Verticalrate oppgir flyets stigning, der en positiv verdi betyr at flyet øket i høyde. 

- Denne verdien ble satt til 0 hvis dataene ikke var tilgjengelige. Dette var relativt problematisk 

å løse, da en verticalrate på 0 betyr at flyet flyr rett frem, noe fly gjør store deler av tiden. 

Altså var det nærmest umulig å avgjøre om denne verdien var 0 grunnet en feil, eller om 

dette var fordi flyet faktisk fløy rett frem. 

Incam: 0 

- Dette er en binær verdi som angir om flyet var innenfor synsfeltet til kameraet i Hessdalen 

eller ikke. 

- Dette blir bestemt utifra statiske verdier som oppgir et todimensjonalt område i Hessdalen. 

Området er definert ved hjelp av følgende verdier: 

o Longpos mellom 9.8 og 10.5 

o Latpos mellom 60.0 og 61.0 

o Høyde blir ikke tatt hensyn til 

Regtime: 2014-04-29 11:59:10 

- Regtime er tidspunktet da data om en overflyvning ble lagret til databasen. Dette blir 

generert av funksjonen NOW() i mysql. Dette ble beskrevet i 3.3.6.3. 

- Databasen tar det nåværende tidspunktet i systemet og setter dette inn i regtime kolonnen. 

Merk at dette er tidspunktet når henvendelsen til databasen forekom, og ikke når dataene 

faktisk ble innsatt. Dette betyr at selv om databasen kan bruke tid på å få bearbeidet 

dataene, vil alle forespørsler som ble sendt samtidig bli tildelt samme regtime-verdi.Dette 

betyr at når flydeteksjonssystemet setter inn data for en overflyvning (dette skjer som en 

sammenhengende operasjon etter at hele overflyvningen er ferdig) vil samme regtime verdi 

bli gitt til alle radene. 

- En svakhet ved dette systemet er hvordan det konkluderer en overflyvning. Systemet venter 

til et predefinert tidsintervall (se "LAST_POS_TIMEOUT" i Figur 4.2: Konfigurasjonsfil, 

flydeteksjonssystem) har passert etter siste logging, og konkluderer overflyvningen når tiden 

løper ut. Problemet oppstår når flyet bare har vært usynlig for sensoren i en kort periode. 

Dette vil føre til at to ulike regtime verdier vil bli produsert for et fly som egentlig er en og 

samme overflyvning. Dette er beskrevet i 3.3.6.3. 

Til sist skal det nevnes at de fleste av disse kolonnene (med unntak av der det motsatte var 

spesifisert) blir tillat å være null (ikke definert) av databasen. Dette kunne ha vært problematisk for 

vårt system da vårt system mest sannsynlig ville ha prøvd å behandle disse som faktiske tall- eller 

tekstverdier. Dette viste seg imidlertid å ikke være et problem, da flydeteksjonssystemet aldri ga 

verdien null til et datafelt (det ble heller satt til 0 eller en tom tekststreng). 



67 
 

All prosessering av data som foregår i databasen blir beskrevet i 4.3, da det er webserveren som 

initierer dette. 

 

4.3 Backend - Kode på webserveren 
Vårt system opererer både på sluttbrukerens maskin, webserveren, og i databasen (via SQL). I dette 

kapittelet tar vi for oss hvordan koden på webserveren fungerer, samt hvordan denne arbeider mot 

databasen. Før selve systemkoden forklares skal vi beskrive maint.php, som var et program vi laget 

for uttynning av databasen, et tema som har vært nevnt flere ganger tidligere. For en full oversikt 

over hvordan de ulike delene av systemet arbeider samme, og den totale dataflyten, se 4.5. 

4.3.1 Databasetynning 

I 4.1.3 beskrev vi hvordan flydeteksjonssystemet ble modifisert for å unngå at unødvendige mengder 

data ble lagret. Konklusjonen var at systemet inneholdt en konfigurasjonsparameter som ga en øvre 

grense for hvor mange punkter som skulle lagres per overflyvning. Denne grensen ble satt til 25, 

laveste grense som var mulig i flydeteksjonssystemet. Dette måtte så reflekteres for dataene lagret i 

databasen, dette skal vi ta for oss her. 

maint.php var et skript vi utviklet for å tynne databasen. Dette skriptet ble kjørt bare en enkelt gang, 

og resultatet var at alle data i databasen ble normalisert, slik at de aldri ville inneholde mer enn 25 

rader per overflyvning. For å få til dette var gruppering av fly nødvendig, dette er beskrevet i 4.3.2. 

maint.php fungerte slik at alle data ble hentet fra databasen, gruppert i overflyvninger, og deretter 

bearbeidet. 

Hvis en overflyvning inneholdt færre punkter enn den valgte grensen (25) ville hele overflyvningen bli 

bevart. Hvis det var flere punkter, ville imidlertid algoritmen bestemme hvilke punkter som skulle 

beholdes, og alle andre ble slettet. 

For å forklare hvordan skriptet bestemte hvilke punkter som skulle beholdes, tar vi for oss et 

eksempel: 

Hvis man har 200 rader som man ønsker å beholde 4 av (for enkelhets skyld), tar man  
   

 
   . Man 

tar vare på hver femtiende rad, dette blir radene: 1, 50, 100 og 150. Vi ser at radene 150 til 200 blir 

helt ignorert. Dette er ikke en tilfredsstillende jevn distribusjon. 

Trikset er simpelt, man deler på antall ønskede rader minus 1, slik: 
   

   
 
   

 
      . Altså får man 

nå med rad 1, 66, 132 og 198 (merk at desimalene tas vekk, i motsetning til å runde av tallet). Vi tar 

så bort det siste elementet og heller bestemmer at dette skal være rad 200, altså det helt siste 

elementet, alltid. Vi får deretter et utvalg som er slik vi ser i Figur 4.3: Jevnt utvalg (4 valgte punkter 

ut fra totalt 200). 

 

 

 



68 
 

Figur 4.3: Jevnt utvalg 

 

Vi får en jevn distribusjon, i motsetning til slik vi ser i Figur 4.4: Ujevnt utvalg. 

Figur 4.4: Ujevnt utvalg 

 

Vi ser på den nederste versjonen at det er 4 punkter, med endepunktene, men det er ikke jevnt 

distribuert. Vår løsning tok hånd om dette slik at det alltid ble generert et konstant antall elementer, 

som alltid var jevnt fordelt. 

Etter at de ønskede punktene var valgt ut, kunne alle andre punkter slettes. Måten vi utførte dette 

på var ikke en direkte forespørsel mot databasen, da dette potensielt ville få katastrofale følger 

under programtesting. Det vi heller bestemte oss for å gjøre var at eventuelle rader som skulle 

slettes, altså rader som IKKE ble valgt, produserte en såkalt DELETE-statement. Denne kunne for 

eksempel se slik ut: 

DELETE FROM flightdata WHERE hexident="06A052"AND postime=1370085750; 

Vi hentet altså ut hexident og postime for radene som skulle slettes, da disse var unike og 

identifiserende verdier for en rad (se 4.2). Deretter slettet vi radene en av gangen. 

Merk at disse utskriftene ble plassert i en såkalt .sql-fil. Altså en fil som inneholdt en liste med slike 

database-kommandoer, som vi så kunne kjøre direkte i databasen da filen var ferdig generert. 

Etter å ha kjørt denne filen ble antall rader omtrent halvert fra ca. 600 000 til ca. 300 000. Det vil si at 

ca. 300 000 DELETE-statements ble generert. Det viste seg problematisk å faktisk få kjørt dette, da 

det ville bli en enormt tidskrevende prosess. Vi prøvde først å åpne denne i MySQL Workbench, og 

kjøre den derfra, men dette viste seg å gå ekstremt sakte. Hver enkelt-setning ble overført og 

eksekvert en-etter-en. Dette ville ha tatt flere dager. Derfor bestemte vi oss heller for å kjøre dette 

ved help av MySQLs command line verktøy. På denne måten fikk vi kjørt .sql-filen på få timer. 

4.3.2 Gruppering av fly 

En annen viktig del av vårt system var hvordan vi skulle få gruppert fly i en overflyvning. Metoden vi 

kom frem til var å bruke en sammensetning av databasekolonnene Hexident og Regtime. Hexident 

var en unik identifikator for et gitt fly, Regtime var tidspunktet da en overflyvning ble lagret i 

databasen. Derfor ville disse kolonnene til samme identifisere en unik overflyvning. Det skal nevnes 

at Regtime nesten var tilstrekkelig i seg selv, men da det ikke var utenkelig at to ulike fly kunne fly ut 

fra rekkevidden til sensoren på nøyaktig samme tid, måtte vi også bruke Hexident for å skille disse 

tilfellene. 



69 
 

Grupperingen foregikk slik at uthentingene fra databasen ble sortert på hexident i førsterekke, og 

deretter på regtime. Dette ble altså behandlet i selve databasen.Vi fikk en forløpende oversikt over 

hvert enkelt unike fly, som videre var sortert i forhold til tidspunktene dette hadde vært i nærheten 

av sensoren. Deretter var det trivielt å gruppere flyene. 

Radene ble løpt igjennom en etter en. På grunn av sorteringen ville alle like hexidents komme rett 

etter hverandre. Hver nye hexident programmet kom over ville opprette en ny gruppe (for en 

overflyvning), og hver nye regtime innenfor den samme hexidenten ville på samme måte også 

opprette en ny gruppe. Regtime-verdier som var innenfor en gitt grense, med tanke på 

unøyaktigheter i systemet, ville bli plassert i samme gruppe. 

Hver gang en ny gruppe ble opprettet, ble den gamle gruppen konkludert og konvertert til JSON, som 

så ble sendt til klienten. Formatet på dataene er beskrevet i 4.3.3. 

Unøyaktighet i regtime verdier, slik nevnt over, måtte vi ta hensyn til under gruppering. Regtime 

kunne potensielt kunne inneholde små variasjoner for samme overflyvning. Dette ville skje i 

situasjoner der lagringen av rader til databasen skjedde på et tidspunkt der systemklokken tikket 

over til et nytt sekund i løpet av innsettingen, eller flyet var usynlig for sensoren i et lite tidsrom. 

Dette var usannsynlig, men det var et hensyn vi valgte å ta for å være på den sikre siden. Vi løste 

dette enkelt ved å si at en regtime som var innenfor en predefinert grense (konfigurerbar) ble slått 

sammen, slik at selv punkter med litt varierende regtime ble oppført under samme overflyvning. 

Dette gjaldt selvsagt bare punkter med samme hexident. 

4.3.3 JSON 

Vårt system overførte data mellom webserveren og klienten i form av JSON, et utsnitt av dette ser du 

i Eksempel 4.1: JSON. 

Eksempel 4.1: JSON 

{"flightdata":[{ 
    "planeID": "478481", 
    "flightID": "NAX758", 
    "regtime": 1398781587, 
    "sightingCount": 2, 
    "sightings": [ 
        { 
            "speed": 336, 
            "altitude": 21250, 
            "lat": 62.6667, 
            "lng": 11.5918, 
            "time": 1398781512, 
            "rotation": 2, 
            "ascent": -2048 
        }, 
        { 
            "speed": 336, 
            "altitude": 21250, 
            "lat": 62.6667, 
            "lng": 11.5918, 
            "time": 1398781512, 
            "rotation": 2, 
            "ascent": -2048 
        } 
    ] 
}], "flightCount": 1, "sightingCount": 2, "rowCount": 2} 

 



70 
 

Slik vi ser av denne utskriften omhandler det en overflyvning med to punkter for den gitte 

overflyvningen (dette er et kraftig forenklet eksempel). I tillegg er generell informasjon om utvalget 

presentert som separate datafelter, i slutten av utskriften. Noe som også skal nevnes er at denne 

utskriften blant annet inneholder et felt kalt "rotation". Dette er altså "track" fra databasen, men gitt 

et nytt og mer forståelig navn. Oversikten over dette er gitt i 4.3.4.  

En detalj som er verdt å nevne er at måten vår kode fungerer på er at JSON-koden blir skrevet ut 

kontinuerlig, hver gang en overflyvning er ferdig prosessert. Dette er da i motsetning til å gjøre ferdig 

all data, for så å sende alt samtidig. Ved å sende det i små deler, forløpende, løste vi mange 

problemer med de store mengdene data som lå i databasen, da de ikke ville bli aggregert noe annet 

sted enn på klientmaskinen. 

Det skal også nevnes at vår kode gjorde det mulig å hente ut en oversikt over utvalget ved å utføre 

en såkalt "probing". På denne måten fikk man oversikt over hvor mye data dette utvalget ville 

medføre (uten å utføre selve datauthentingen), slik at man kunne gjøre om på utvalget hvis dette 

viste seg å bli for mye. 

4.3.4 Omdøping av kolonnenavn 

De ulike kolonnene i databasen inneholder navn som potensielt kan være forvirrende og uforståelige 

for sluttbruker. Disse ble derfor omdøpt til navn som var mer gunstige. En oversikt over disse finner 

du her (databasenavn til venstre, vårt navn til høyre): 

- hexident => planeID: En unik identifikator på flyet basert på senderen som står i flyet. 

- postime => time: Tidspunktet for når senderen sendte ut denne datameldingen. 

- flightid => flightID: Nummeret for den aktuelle "flighten", gitt stor bokstav på ID for å matche 

PlaneID. 

- latpos => lat: Breddegraden flyet befant seg ved. 

- longpos => lng: Lengdegraden flyet befant seg ved. 

- track => rotation: Rotasjonen/orienteringen til flyet, altså hvilken retning det fløy i. 

- speed: Ingen forandring. 

- altitude: Ingen forandring. 

- verticalrate => ascent: Flyets stigning. 

- regtime => UNIX_TIMESTAMP(regtime): beholdt samme navn, men forandret formatet til å 

være et unix timestamp, altså samme som postime. 

 

4.4 Frontend - Kode på klientmaskinen 
Data blir hentet fra databasen og behandlet på webserveren, deretter blir det sendt videre til 

klientmaskinen. Her utføres også gjennstående prosesseringer, samt fremvisning av resultatet for 

sluttbruker. I 4.4.1 gir vi en oversikt over koden som kjører på klientmaskinen, mens 4.4.2 gir en 

oversikt over hvordan GUI-et ser ut, og hvordan det brukes. 

4.4.1 Code behind 

Koden som kjører på klientmaskinen har helt andre forutsetninger enn det som kjører på 

webserveren. Mens vi på webserveren må ta hensyn til eventuelt stress ved stor pågang, må vi på 

klientmaskinen ta hensyn til at datamaskinen er kraftig nok til å gi brukeren en responsiv og stabil 



71 
 

opplevelse. På den annen side er det ikke like kritisk å ta hensyn til store arbeidsoppgaver som 

brukeren initierer, da dette bare vil gå utover brukeren selv, i motsetning til at det går utover 

webserveren (og alle andre brukere). 

4.4.1.1 Informasjonsvinduer og flyikoner 

Dataene som hentes ut må presenteres for sluttbrukeren på en gunstig måte. Vi har valgt å gjøre 

dette ved å plassere ikoner for alle overflyvninger på kartet, sammen med alle datapunktene for 

overflyvningen hvis bruker ønsker dette. Begge disse kan klikkes på for å presentere de assosierte 

dataene for brukeren i et informasjonsvindu / popup boble. Et eksempel på dette ser du i Figur 4.5: 

Informasjonsvindu. 

Figur 4.5: Informasjonsvindu 

 

Merk at dette er et simplifisert informasjonsvindu som ikke inneholder alle data fra databasen. Merk 

også de to ikonene øverst. Disse er ekstrafunksjoner som blir beskrevet nærmere i 4.4.2. 

Dette informasjonsvinduet blir åpnet ved å trykke på enten et fly-ikon, eller ved å trykke på en "vei-

node" som representerer et datapunkt fra databasen, alle disse danner så til samme den totale 

overflyningen. 

Informasjonen som vises frem i dette vinduet blir utformet av en løsning vi selv laget, som gjør det er 

relativt lett å forandre innholdet i informasjonsvinduet. Dette gjøres ved hjelp av tekst som 

inneholder små kodesnutter. Disse tolkes av vårt program når teksten behandles, med mulighet for å 

blant annet utføre konverteringer og liknende der dette er relevant. Et eksempel på en slik 

tekststreng (den som genererte informasjonsvinduet i Figur 4.5: Informasjonsvindu) er vist i 

Eksempel 4.2: Syntaks for informasjonsvindu. Dette plasseres i egne filer, en for hver type 

informasjonsvindu. 

  



72 
 

Eksempel 4.2: Syntaks for informasjonsvindu 

<div class="infoWnd"> 
    <p class="header"> 
        <span class="flightSymbol" style="color: $F.color">&diams;</span> {printOrDefault 
$F.flightID; (Ingen ID)} 
    </p>  
     
    <p class="controls"> 
        <img src="img/narrow.png" class="actionImage" title="Begrens tidsrom til denne 
avgangen" onclick="selectRange({_flightRange $F.sightings})">  
        <img src="img/gototime.png" class="actionImage" title="Gå til tidspunkt" 
onclick="selectInstant({date $S.time; unix})"> 
    </p> 
     
    <p> 
        <span class="name">Tid:</span> <span class="value" title="$S.time">{date 
$S.time}</span> 
    </p>  
         
    <p> 
        <span class="name">Posisjon:</span> <br/> 
        <span class="value"> 
            {convertPos $S.lat; N; S} ({round $S.lat; 4}) 
            <br/> 
            {convertPos $S.lng; Ø; V} ({round $S.lng; 4}) 
        </span> 
    </p>   
     
    <p> 
        <span class="name">Observasjon:</span> <br/> 
        <span class="value" title="%S:angle%">{round $S.angle; 2}° fra horisont ({round 
$S.altitude; 0}m)</span> 
    </p> 
</div> 
 

 

Uten å gå i for stor detalj ser vi at dette er vanlig HTML, som spesifiserer innholdet i 

informasjonsvinduet. Unntaket er linjer som denne: 

<span class="flightSymbol" style="color: $F.color">&diams;</span> {printOrDefault 
$F.flightID; (Ingen ID)} 

 

Denne linjen spesifiserer fargen på diamanten øverst til venstre, som er fargen til overflyvningen. Her 

brukes nøkkelordene Flight (overflyvning) og Sighting (flyobservasjon) i form av $F og $S. En flight 

består av flere sightings. Fargen til diamanten blir altså bestemt av Flight-objektet sin Color, 

$F.color. 

Deretter ser vi at funksjonen printOrDefault skriver ut flyets FlightID, $F.flightID. Hvis denne ikke 

er tilgjengelig brukes default verdien, her bestemt til å være "(Ingen ID)". printOrDefault er altså 

en funksjon i vårt program som blir kalt når navnet blir oppdaget i denne strengen. Flere slike 

funksjoner sees i eksempelet over, slik som round, convertPos og date. 

Flere datatransformer er definert, og formatteringen på det som skulle vises i informasjonsvinduene 

er lett å utføre ved å sette opp de ønskede dataene (med henvisninger til Flight eller Sightings, 

henholdsvis), samt en referanse til funksjoner/transformer der dette er relevant. 



73 
 

4.4.1.2 AMS 

Selve basestasjonen, Hessdalen AMS, ble inkludert på kartet for å lettere kunne orientere seg. Dette 

er illustrert i Figur 4.6: AMS ikon. 

Figur 4.6: AMS ikon 

 

 

Av figuren ser vi AMS ikonet med tilhørende data. Ved å plassere ut dette ble det blant annet lettere 

å tolke dataene fra fly i området, slik som høyde og vinkel mot basestasjon. På denne måten ble det 

også lettere å se om terreng ville blokkere fri sikt mot flyet, osv. 

Dette ikonet fungert også som sentrum for kartet, og spesifiserte standard-utsnittet av kartet som 

brukeren så da websiden ble åpnet, igjen for å gjøre det lettere for brukeren å orientere seg. 

4.4.1.3 Datauthenting 

Selve uthentingen fra databasen blir prossesert på webserveren og konvertert til JSON. 

Klientmaskinen tar så imot disse dataene og plotter disse på kartet. Dette er en relativt grei 

operasjon som ikke krever større utdyping, men likevel er det en viktig detalj ved dette som må 

belyses. Mens data hentes ut skal disse plottes på kartet. Dette er en relativt krevende prosess, da 

det er snakk om store mengder data. Kartet kunne bli uresponsivt, og i værste fall kræsjet hele 

nettleseren.  

Måten vi løste denne problemstillingen på var relativt simpel. Mellom hver overflyvning som skulle 

plottes på kartet tok systemet en pause på ett millisekund. Dette ga systemet tid til å rendere 

(/tegne) selve kartet, bearbeide data, og utføre eventuelle andre arbeidsoppgaver (som ikke ville blitt 

behandlet hvis vi ikke tvang vårt program til å ta en kort pause, da alt av JavaScript blir kjørt 

synkront). Dette gjorde at selve prosessen tok lenger tid, fordi systemet nå ventet i et lite øyeblikk 

før det gikk videre med neste overflyvning.  

Denne tidsforsinkelsen økte lineært med antall overflyvninger. Ved for eksempel en måned (ca. 6000 

overflyvninger) ville systemet altså minst ta 6 sekunder lenger. Likevel ville dette i praksis gjøre at 

systemet ble raskere, da systemet ikke lenger hang seg. I tillegg ville ikoner bli innført på kartet litt-

etter-litt, i motsetning til at alt ble fremstilt samtidig etter flere sekunder med uresponsivitet. 



74 
 

Det skal også nevnes at før selve uthentingen fant sted, ble en liten forespørsel sendt til databasen 

for å se hvor mye data som utvalget ville medføre. Hvis dette utvalget var helt tomt (og større enn 24 

timer) ble brukeren presentert med en dialog som informerte om at systemet kunne ha vært offline i 

den aktuelle perioden. Flytrafikken over Hessdalen så sjeldent mer enn en time uten trafikk, derfor 

var det greit å anta at systemet var offline hvis det gikk lang tid uten flytrafikk. En liste med datoer 

der det var kjent at systemet var offline ble også presentert til brukeren i denne situasjonen. Denne 

listen er som følger: 

- 19.05.13 til 22.05.13 

- 10.06.13 til 08.08.13 

- 18.08.13 til 13.01.14 

- 16.01.14 til 24.01.14 

- 27.01.14 til 20.02.14 

Brukeren fikk på samme måte også informasjon om usedvanlig store utvalg, da dette kunne medføre 

kraftig last på klientmaskinen. Antall overflyvninger som ville bli uthentet ble presentert for 

brukeren. 

4.4.1.4 Interpolasjon og animasjon 

Da vi bestemte oss for at systemet skulle tillate et dynamisk tidsutvalg (et "øyeblikk"), ble det 

nødvendig med interpolasjon. Dette lot oss finne verdier for flyobservasjoner plassert mellom to av 

punktene fra databasen. Dette er relativt simpel matematikk hvis det er snakk om lineær 

interpolasjon. Vi valgte å ikke gå for en mer avansert form, da lineær interpolasjon var mer en godt 

nok for vårt bruksområde. Et eksempel på dette ble gitt i 3.2.4.6, vi inkluderer dette eksempelet 

igjen, for enkelhets skyld (se Figur 4.7: Interpolasjonsoppgave 2): 

Figur 4.7: Interpolasjonsoppgave 2 

 

Problemstillingen er altså at vi har to sett med data, og ønsker å finne verdien på et punkt mellom 

disse. Fremgangsmåten er som følger: 

Hvis høyden går fra å være 31000m til 32000m vil det si at det skjer en forandring på 1000 meter. 

Denne forandringen foregår i et tidsrom på 64 - 15 = 49 tidsenheter (benevningen er irrelevant). 

Tiden der vi ønsker å finne høyden, 30, er 15 sekunder etter starttidspunktet. 



75 
 

Altså vil vi vite hva høyden er ut av totalt 1000 meter på et tidspunkt som er 15 ut av totalt 49 

tidsenheter. Dette er triviell matematikk: 

 

    
 
  

  
    

  

  
          

Altså er flyet i en høyde av 31000 + 306 meter på det angitte tidspunktet, 31306 meter. 

Denne metoden kan så brukes for å regne ut alle de ulike datafeltene på en flyobservasjon plassert 

mellom to andre. 

Koden som utfører denne interpolasjonen er relativt grei, og krever ingen dyptgående forklaring. En 

problemstilling må imidlertid nevnes, og det er at datafelter, slik beskrevet i 4.2, kan ha blitt satt til 0 

grunnet mangel på informasjon. Dette vil gjøre at interpolasjonen vil gi potensielt misvisende verdier. 

Det kan for eksempel se ut som om et fly er på vei til å lande hvis høyde har blitt satt til 0, og flyet 

sakte beveger seg mot denne verdien (uten at dette blir reflektert i verdien som angir flyets stigning). 

Dette var det desverre lite å gjøre med, uten å "pusse" på dataverdiene. Dette kunne ha gitt 

brukeren et feil bilde av overflyvningen. Derfor var det bedre å la feildataene være som de var. 

Brukeren hadde også tilgang til alle punktene på overflyvningen, derfor var det enkelt for brukeren å 

selv verifisere dataene interpolasjonen var basert på. 

Interpolasjon ble kontrollert av en tidslinje som brukere selv kunne velge ut et "øyeblikk" fra. Dette 

utførte så de nødvendige interpolasjonene og flyttet flyikonene til de nye koordinatene (med 

interpolerte dataverdier). Et eksempel på denne tidslinjen ser du på Figur 4.8: Tidsmanipulator. 

Figur 4.8: Tidsmanipulator 

 

Slik vi ser på figuren er et øyeblikk (29. april 2014 18:28:43) valgt på tidslinjen. Ingen fly er synlige på 

denne delen av kartet i dette "øyeblikket". Alle overflyvninger vil bli interpolert på bakgrunn av dette 

tidspunktet, og flyikonene vil bli plassert på de korrekte koordinatene på kartet, med nye, utregnede 

verdier. Altså ville påvirkning av tidslinjen direkte flytte ikonene på kartet. Det vil si at animasjon 

enkelt kunne oppnås ved å kontinuerlig flytte tidslinjen med jevne mellomrom. Det viste seg 



76 
 

imidlertid at animasjon ikke var av stor interesse for oppdragsgiver. Derfor bestemte vi oss for å gå 

bort fra dette, for å heller prioritere andre aspekter av prosjektet. 

4.4.1.5 Vinkel til basestasjon 

Det ble spesifikt etterspurt av arbeidsgiver at systemet viste vinkelen til basestasjonen, hvis dette 

viste seg å være mulig. Vinkelen det er snakk om er altså vinkelen som man må se "opp" for å se flyet 

når man står ved Hessdalen AMS, slik illustrert i Figur 4.9: AMS vinkel. 

Figur 4.9: AMS vinkel 

 

Vi ser at dette er vinkelen ut fra basestasjonen og opp mot flyet. Slik illustrert (sterkt overdrevet i 

dette bildet) vil kurvaturen til jordkloden påvirke denne utregningen. Dette er på grunn av at flyets 

høyde selvsagt er oppgit rett ned mot bakken (og ikke til den røde grunnlinjen vist i figuren). Det har 

seg heldigvis slik at det er snakk om et relativt lite område, som gjør det mulig å behandle 

strekningen langs bakken som en rett linje. På denne måten kan vinkelen regnes ut med vanlig 

trigonometri som tar i bruk høydeforskjellen mellom AMS-en og flyet, samt avstanden mellom dem (i 

en tilnærmet rett linje langs jordoverflaten). 

Høydeforskjellen er lett å regne ut, da flyets høyde blir sendt ut av senderen i flyet, og høyden til 

basestasjonen (i meter over havet) lett kan finnes ved hjelp av atlas og liknende (AMS-en er også 

plassert omtrent i bakkehøyde). 

Problemet er å finne avstanden mellom flyet og basestasjonen i meter, da de eneste verdiene vi vet 

er koordinatene til begge. Hessdalen AMS er plassert vet 62°49’17” nord, 11°12’7” øst. Flyets 

koordinater blir sendt ut av flyets sender. Disse koordinatene er oppgitt i "grader", og sier oss ingen 

ting om avstanden mellom punktene i meter. En annen problemstilling er igjen jordens kurvatur. 

Måten denne avstanden så regnes ut på er ved hjelp av en formel som tar dette med i betraktning og 

produserer en avstand i meter som vi kan bruke direkte i vår løsning. Dette er den såkalte 

"haversine"-formelen som produserer "storsirkel" avstanden mellom to geografiske punkter 

(Movable Type Ltd, 2014). Denne formelen finner du i Formel 4.1: Haversine. 

 



77 
 

Formel 4.1: Haversine 

      (
  

 
)     (  )     (  )      (

  

 
) 

         (√  √   ) 

      

Der   er breddegrad, λ er lengdegrad og R er jordens radius (6.371 km). Merk at vinklene som blir 

brukt i disse funksjonene må være oppgitt i radianer, samt at denne funksjonen regner ut avstanden i 

kilometer, der vi bruker meter i vårt program. 

Etter å ha regnet ut denne vinkelen settes denne så inn som et eget datafelt for en overflyvning. 

Denne utregningen kunne også ha vært utført på webserveren, men vi valgte å ikke overlate mer 

prosessering til denne enn den allerede hadde, slik at klientmaskinen måtte ta på seg dette arbeidet. 

4.4.1.6 Heatmap 

På grunn av svakheter i flydeteksjonssystemet vist det seg nødvendig å gi brukeren en mulighet for å 

se sannsynligheten for fly, selv om systemet ikke hadde gjort noen registreringer i det aktuelle 

området. Dette implementerte vi som en heatmap, altså et slags filter som ble lagt over kartet, som 

viste intensiteten av fly ved help av farger. Et eksempel på en heatmap, og data dette ble basert på, 

ser du i Figur 4.10: Heatmap med kilde. 

  



78 
 

 

Figur 4.10: Heatmap med kilde 

 

Slik vi ser av denne figuren angir heatmap-en en overordnet oversikt over hvor det var størst 

forekomster av fly. Ved hjelp av dette er det mulig å anslå sannsynligheten for at et fly passerte et 

område, selv hvis ingen data var logget på det aktuelle tidspunktet. Dette gjør også at det blir lettere 

å fremstille store mengder data. Grunnen til dette er at genereringen og tegningen av en heatmap er 

betraktelig mindre krevende for datamaskinen, enn det er å tegne opp et ikon for alle observasjoner, 

samt linjer som knytter disse sammen. 

Da brukeren selv bestemmer tidsintervallet som heatmap-en skal baseres på, vil dette også si at 

brukeren selv har kontroll på hvor spesifikt det blir. Større tidsrom gir selvsagt mer generell oversikt, 

men dette vil også si at det blir vanskeligere å ta en avgjørelse på bakgrunnen av resultatene. Det 

beste var altså å gi brukeren full kontroll på dette. 



79 
 

4.4.2 Webside GUI og funksjoner 

Sluttproduktet er en webside med et kart som viser flytrafikken i et gitt tidsrom. Det skal være mulig 

for brukeren å sette et start- og sluttidspunkt, og ikoner skal plasseres ut på kartet for å representere 

et fly på et gitt tidspunkt. Disse ikonene skal kunne klikkes på for å gi mer utfyllende informasjon (alt 

dette hentes fra databasen). 

Overflyvninger blir presentert som en linje med punkter, der hvert punkt er en rad fra databasen. Et 

flyikon blir brukt for å representere et valgt "øyeblikk" i tid. Systemet er vist i Figur 4.11: 

Websideelementer. 

Figur 4.11: Websideelementer 

 

 

 

1. Kartet kan navigeres ved hjelp av verktøyene øverst til venstre på kartet, eller ved å klikke og 

dra på kartet. 

2. På kartet er det plassert et rødt rektangel som representerer rekkevidden til målestasjonen. 

Den rødstriplede linjen er en del av dette rektangelet. Denne begrenser datautvalget, slik at 

man aldri vil finne data for områder utenfor. Grensen er satt til de største og minste verdiene 

av lengde- og breddegrader registrert i systemet ved tidspunktet for vårt prosjekt. Grensene 

kan forandres ved hjelp av en konfigurasjonsfil, hvis det ønskes å begrense utvalget 

ytterligere. 

3. Det ønskede tidsrommet for datauthenting kan bestemmes ved hjelp av dette verktøyet. Her 

kan dato og klokkeslett bestemmes for start- og slutt tidspunkt for datautvalget. Data hentes 

automatisk for den siste halvtimen når websiden åpnes for første gang (eller fra forrige 

utvalg hvis dette ble spesifisert ved et tidligere besøk). Det er også mulig å velge mellom 

ulike pre-definerte tidsintervaller. Siste halvtime, siste time eller siste 2 timer. 

 

Når det gjelder de spesifike tidsutvelgerne benytter disse en kalender slik vist i Figur 4.12: 

Tidsvelger. Pilene øverst brukes for å bestemme måned (og år). Dagen i dag er alltid markert, 



80 
 

og aktuell dag for datauthentingen velges ved å trykke på dagen i kalenderen. Tiden 

bestemmes ved hjelp av to "slidere". Når ønsket tidspunkt er valgt kan dialogen bare lukkes 

ved "lukk" knappen, da selve tekstfeltet alltid holdes oppdatert med verdiene valgt i vinduet. 

Tekstfeltet som datostrengen plasseres i kan også editeres direkte. 

 

Brukeren får tilbakemelding hvis et stort antall data blir uthentet, hvis brukeren ønsker å 

avbryte operasjonen. Hvis det valgte utvalget er tomt og større enn 24 timer, kan dette tyde 

på at systemet var nede. Brukeren blir gitt et informasjonsvindu som blant annet inneholder 

data om tidspunkter der det er kjent at systemet var nede. 

Figur 4.12: Tidsvelger 

 

 

4. Den lange "slideren" nederst til venstre er tidslinjen. Denne bestemmer "øyeblikket" for 

dataene som vises på kartet. Dette brukes for å bestemme hvor de interpolerte flyikonene 

plasseres. En forklaring på tidslinjen blir gitt i programmet ved å trykke på spørsmålstegnet. 

5. Her kan man se både øyeblikksbildet for et fly, alle punktene fra databasen ("punkt-prøver" 

for overflyvningen) og linjene som knytter disse samme. Flyikonet representerer som sagt 

den nøyaktige plasseringen for flyet på øyeblikket valgt på tidslinjen. De andre punktene er 

verdiene hentet fra databasen, og viser sammen med den tilknyttende linjen hvilken bane 

flyet følger. 

 

Hvis man trykket på enten et flyikon eller et punkt på linjen, vil et informasjonsvindu dukke 

opp. Dette viser de tilhørende dataverdiene for dette punktet. Man kan se informasjon som 

posisjon, høyde, fart osv. for hver observasjon. Verdiene brukt for flyikonet er interpolert 



81 
 

basert på de nærmeste punktene. Navnet på flyet, som står øverst i informasjonsvinduet, er 

rutenummeret tildelt av flyselskapet. Dette er IKKE adressen til den fysiske senderen plassert 

inne i flyet (j.fr. 4.2, hexident). I tillegg inneholder dette vinduet to funksjoner for å gjøre 

navigering på tidslinjen enklere. Det er to ikoner, der det ene begrenser det valgte 

tidsrommet til å bare gjelde for perioden for den valgte overflyvningen. Det andre ikonet 

hopper i tid (på tidslinjen) til tidspunktet for det valgte punktet (flyobservasjonen). 

6. Dette sender-liknende ikonet representerer målestasjonen i Hessdalen. Dette står på en fast 

posisjon på kartet. Dette inneholder også et enkelt informasjonsvindu med data om 

målestasjonen. 

7. Knappene plassert i denne boksen gir brukeren mulighet til å påvirke hva som vises på kartet. 

Fra toppen og nedover er disse: Heatmap, Stier, Noder og Sticky. 

 

Heatmap bytter ut ikonene på kartet med en "heatmap", altså en generell oversikt over 

intensiteten av flytrafikk. På denne måten får man en mer generell oversikt over store 

mengder data. Dette kan for eksempel brukes for å gi en generell oversikt over 

sannsynligheten for fly, basert på hvor de fleste flyene har passert tidligere. Merk at 

heatmap-en er basert på de diskrete "punkt-prøve"-verdiene fra databasen, i motsetning til 

en kontinuerlig linje med punkter. Dette vil føre til områder med grønne enkelt-punkter uten 

tilknytning. Dette betyr bare at det er for lite data til å produsere et bruktbart heatmap i 

området, derfor kan disse bare oversees. En forklaring på heatmap-en vises ved at man 

trykker på spørsmålstegnet i programmet. 

 

Stier bestemmer om stien som flyet fulgte skal vises på kartet. Dette gjøres ved å tegne en 

strek mellom nodene fra databasen. 

 

Noder er de små rundingene på kartet. Disse representerer radene med data fra databasen, 

og kan trykkes på for å få detaljert informasjon om flyene. Flyikonene på kartet baserer sine 

verdier på interpolasjon mellom slike noder. 

 

Sticky gjør at informasjonsvinduer for flere ikoner kan åpnes samtidig. På denne måten blir 

det mulig å se data for flere fly samtidig, slik at disse lett kan sammenliknes opp mot 

hverandre. 

4.5 Systemoversikt 
Etter å ha forklart de ulike systemene i de foregående kapitlene vil den totale systemoversikten 

beskrives her, hovedsakelig hvor de ulike filene som utgjør systemet eksekverer, og hvordan de 

forholder seg til hverandre. For sammenhengen mellom hovedkomponentene i vårt system, og 

hvordan dette henger sammen med fly- og lysdeteksjonssystemene, se 4.1.1.  

 

 

 

 



82 
 

4.5.1 Hovedtrekk 

Komponentene som vårt system omfatter er vist i Figur 4.13: Vårt system. 

Figur 4.13: Vårt system 

 

Komponentene som vårt system omfatter er databasen og webserveren på frigg, samt 

klientmaskinen hos sluttbruker. Data blir overført mellom disse tre systemene, og undergår ulike 

typer prosessering langs veien. Merk at webserveren i ettertid ble integrert med websiden for 

Hessdalen, og flyttet til hessdalen.org. Dette hadde ingen innvirkning på ytelse eller liknende, men 

forekom etter at løsningen og rapporten var ferdig utarbeidet. Derfor tar systemforklaringen 

utgangspunkt i at webserveren er plassert på frigg.hiof.no. 

Alt begynner med at brukeren går inn på vår side og velger et tidsintervall for uthentingen. All 

flytrafikk innenfor dette tidsintervallet blir hentet ut. Forespørselen skjer via en AJAX forespørsel 

tilbake til webserveren (uten dette vil ikke brukeren få kontakt tilbake til webserveren etter at siden 

har blitt lastet).  

Forespørselen blir behandlet av webserveren, som kontakter databasen (som foreløpig er plassert på 

samme fysiske servernettverk). Dette skjer ved hjelp av en SQL forespørsel, som blant annet 

begrenser hvilke tidspunkter som er interessante under uthentingen. Bare data med "postime"-

verdier (tidspunktet da flyet sendte ut meldingen) innenfor grensene satt av brukeren vil bli hentet 

ut. Webserveren inneholder brukerinformasjon om databasen, slik at den får tilgang til dataene. 

Disse blir ikke gjort tilgjengelige for sluttbruker, og blir heller ikke påkrevd. 

I tillegg til begrensning på tidspunkt, blir også koordinater utenfor det aktuelle området filtrert bort. 

Dette skjer ved hjelp av statiske parameter, som kan konfigureres. Databasen sorterer deretter 

dataene, først på hexident og deretter på regtime (samt postime helt til sist) før det sendes tilbake til 

webserveren. 

Webserveren mottar disse dataene, som så blir gruppert. Grupperingen baserer seg på hexident og 

regtime, og produserer "overflyvning"-objekter, som inneholder datafelter for alle flyobservasjonene 

overflyvningen omfatter. Svaret på AJAX forespørselen blir deretter sendt tilbake til klienten, altså 

disse dataene. Dataene er pakket inn i JSON format, som kontinuerlig sendes til klienten under 

uthentingen fra databasen. Hver gang et overflyvningsobjekt er klart, blir dette sendt til klienten 

umiddelbart. Webserveren har derfor frie hender for å behandle neste overflyvning. 



83 
 

Klientmaskinen mottar disse dataene og begynner å plotte disse på kartet forløpende, med små 

pauser innimellom hver overflyvning, slik at systemet klarer å håndtere arbeidsmengden. Når 

klienten er ferdig med å plotte alle verdiene, er dataoverføringen komplett, og brukeren har nå 

mottat data for det valgte tidsrommet. Deretter kan brukeren ved hjelp av diverse verktøy begynne å 

analysere dette. 

Det må til sist nevnes at heatmap-en som brukeren kan velge å vise, er basert på det faktiske 

datautvalget. Det blir ikke utført et separat utvalg for dette. 

4.5.2 Filstruktur 

Vårt system består av flere filer som kjører på to ulike systemer. PHP-filer kjører på webserveren, og 

de andre blir kjørt på klientmaskinen. Da produktet skulle legges over på webserveren til 

Hessdalenprosjektet, ble det klart at filene skulle ha både en engelsk og en norsk versjon. Derfor 

finnes det et duplikat av disse filene med engelsk tekst.  

 

Filstrukturen var fortsatt den samme, derfor er ikke dette inkludert i forklaringen under. En oversikt 

over filene finner du her: 

Hovedmappe: 

 config.db.inc.php 

 config.inc.php 

 config.js 

 config_eng.js 
Diverse konfigurasjonsfiler. .php-filene angir innstillinger for backend (behandling av data, 
osv.), mens .js-filene angir forskjellige innstillinger som brukes i grensesnittet og 
klientapplikasjonen. 
 

 data.php 
Aksesspunktet for databasen, denne henter ut informasjonen og behandler denne for å 
gruppere fly og fjerne overflødig data. 
 

 index.html 

 index_eng.html 
Definerer HTML-struktur og binder applikasjonen sammen. 
 

 /css 
o main.css 

Angir stilinformasjon. 
 

 /data 
o infownd_ams.html 
o infownd_ams_eng.html 
o infownd_plane.html 
o infownd_plane_eng.html 

Angir “mal” for informasjonsvinduene som vises ved klikk på kartikoner. 
 

 /img 
o ams.png 
o circle.png 



84 
 

o circle_green.png 
o circle_red.png 
o date.png 
o gototime.png 
o menu_heatmap.png 
o menu_node.png 
o menu_paths.png 
o menu_pin.png 
o narrow.png 

Bildefiler som brukes i applikasjonen. 

 

 /js 
Logikk på klientsiden. Javascriptkoden ligger i hovedsak her.  
 

o data.js 
o data_eng.js 

Logikk for databehandling og –overføring 
 

o icons.js 
Behandler bildefiler og ikoner 
 

o infownd.js 
Behandler informasjonsvinduer 
 

o map.js 
Oppsett og vedlikehold av kartet og relaterte objekter 
 

o settings.js 
Grensesnitt for innstillinger 
 

o template.js 
o template_eng.js 

Laster inn og fyller ut maler for informasjonsvinduer. Malene ligger i data/-mappen. 
 

o template-funcs.js 
Inneholder funksjoner som kan kjøres før informasjon settes inn i 
informasjonsvinduer. Dette inkluderer for eksempel formatering av tidspunkter og 
koordinater. 
 

o ui.js 
o ui_eng.js 

Inneholder logikken bak grensesnittet, event handlers og liknende 
 

o util.js 
Inneholder diverse funksjoner som har allmen nytteverdi og ikke passer inn noe 
annet sted. 

 



85 
 

 /lib 
Javascript-biblioteker fra andre kilder 

o date.js 
Nyttefunksjoner for enklere behandling av datoer og tidspunkter 
 

o seedrandom.js 
PRNG-implementasjon 
 

o /lib/timepicker 
GUI-objekter for enkelt utvalg av datoer og tidspunkter 

 timepicker.css 
 timepicker.js 

index.html er dokumentet som kjører på klientmaskinen, og binder websiden sammen. Her blir alle 

elementene på websiden spesifisert, og alle relevante skript blir inkludert. Stilarket som bestemmer 

utseende for websiden ligger i main.css. 

data.php er backend-skriptet som kjører på serveren, med ansvar for å hente ut data fra databasen 

og overføre dette til klienten. I denne filen kjøres SQL-spørringen mot databasen, som henter ut de 

relevante dataene, behandler dem, og konverterer dem til JSON. Merk at data.php også utfører en 

tynning på dataene før de sendes videre til klientmaskinen. Grensen er satt til maksimalt 10 

observasjoner per overflyvning, men dette er konfigurerbart (opp til 25 observasjoner). 

Interaksjonen mellom index.html og data.php foregår i data.js. Dette skriptet sørger for å sende 

forespørselen til data.php, og tar imot dataene (JSON) og konverterer dem til objekter som systemet 

tar i bruk. Denne filen inneholder også funksjonalitet for blant annet interpolering. 

map.js inneholder logikken for selve tegningen av Google Maps -kartet. Her opprettes selve kartet og 

alle visuelle elementer som tegnes på det. ui.js inneholder tilsvarende logikk for resten av websiden, 

slik som dato-velgeren. 

Konfigurasjon av systemet befinner seg i tre ulike filer: config.db.inc.php, config.inc.php og config.js. 

config.js inneholder konfigurasjonen for klientmaskinen. Her bestemmes blant annet standard 

posisjonering av kartet, avgrensning av aktuelt område på kartet og innstillinger for heatmap og 

dato-velgeren. I tillegg defineres enkelte andre variabler som kan være interessante å “tweake”.  

config.inc.php inneholder konfigurasjonen for backend-skriptet. Her settes eventuelle statiske 

grenser for dataene som hentes fra databasen, slik som absolutt geografisk avgrensning. Merk at 

dette tilsvarer den geografiske avgrensningen angitt i config.js (som kun er grafisk). Hvis disse 

verdiene forandres, må dette forandres i begge filer, slik at utvalget stemmer overens med den 

fysiske grensen tegnet på kartet. I tillegg til dette inneholder konfigurasjonsfilen 

"MAX_REGTIME_DIFF" og "RESOLUTION_DEFAULT", som angir hvordan fly skal grupperes og hvor 

detaljert informasjon som sendes til klienten skal være.  

config.db.inc.php inneholder databaseinformasjonen, som bestemmer hvilken database som kobles 

til for å hente dataene samt brukernavn og passord som skal benyttes ved tilkobling. 

I tillegg til disse inneholder programmet flere javaskriptfiler som håndterer mindre komponenter i 

systemet.  



86 
 

infownd.js står for genereringen av informasjonsvinduer, som så knyttes til flyikon-objekter.  

template.js håndterer genereringen av selve informasjonsvinduteksten. Dette behandler filer for 

hver type informasjonsvindu plassert i data-mappen. Disse filene inneholder spesielle kodesnutter på 

vårt eget enkle makroformat, som gjør det enkelt å prosessere data og liknende, før det ferdige 

informasjonsvinduet blir presentert for brukeren. Funksjonene som kan brukes i disse malene 

defineres i template-funcs.js.  

settings.js er et interface som gjør det lettere å behandle diverse innstillinger i programmet.  

icons.js tilgjengeliggjør de ulike ikonene i programmet, både vektorgrafikk spesifisert med path, og 

faktiske ikon-filer plassert i img-mappen.  

Til sist har vi util.js som inneholder diverse enkeltstående funksjoner, som å regne ut vinkelen 

mellom basestasjonen og et fly, eller konvertering fra HSL til RGB-farger.  

lib-mappen inneholder ulike eksterne biblioteker vi har tatt i bruk i vårt produkt. 

 

I tillegg til disse filene brukte vi en fil, maint.php, for tynningen av databasen. Denne hentet ut data 

fra databasen og produserte en SQL-fil for data som skulle slettes. Selve logikken som ble brukt er 

meget liknende tynning-logikken i data.php.  



87 
 

5. Testing og evaluering 
 

Produktet gjennomgikk flere runder med testing internt, i flere ulike miljøer, noe som fulgte naturlig 

av at vi arbeidet iterativt (se 3.5.4). Etter hver store forandring prøvde alle gruppemedlemmer å 

finne feil og mangler i produktet. Det skal også nevnes at gruppemedlemmer til tider var distansiert 

fra utviklingen av produktet, grunnet arbeid på denne rapporten. Dette fikk en positiv effekt på 

testingen, da det ble lettere å få en "naturlig" respons fra hvordan det fungerte. 

Det ble også holdt en demo for oppdragsgiver og veileder nær slutten av prosjektet. På denne kom et 

viktig poeng frem, at det ikke var helt intuitivt hvordan de ulike elementene fungerte. Spesielt 

heatmap. Dette førte til en direkte implementasjon av et informasjonsvindu for sluttbruker. Dette gir 

brukeren en generell oversikt over produktet. 

Det ferdige produktet var stabilt og fungerte tilfredstillende. Problemer med datamengder og 

liknende ble løst med diverse grep, som gjorde at opplevelsen for sluttbruker var responsivt og 

relativt raskt. Et problem som imidlertid sto igjen, og som vi ikke fikk løst, var at produktet ikke 

fungerte i Internet Eplorer. Dette ble klart relativt sent i prosjektet, og var derfor noe vi ikke fikk tid 

til å løse. Produktet fungerte imidlertid som forventet i både Google Chrome og Mozilla Firefox. 

Brukere av Internet Explorer får en beskjed om at produktet ikke vil fungere for dem. 

  



88 
 

6. Diskusjon 
 

I dette kapittelet diskuterer vi resultatene vi oppnådde, med fokus på målet, kravspesifikasjonene til 

produktet og arbeidsmetoden spesifisert i 1.4. 

6.1 Oppnådde mål 
Vårt produkt har gjort det lettere å avklare om et detektert lysfenomen var et forbipasserende fly 

eller ikke. Dette blir oppnådd ved å hente ut data fra databasen, og presentere dette på en webside. 

Noen av dataene var mangelfulle, og det var hele perioder der flydeteksjonssystemet hadde vært ute 

av drift. Det var dessverre noe vi ikke kunne løse. 

Samplingsfrekvensen til systemet har også meget høy da vi begynte på vårt prosjekt, som førte til 

unødvendig store mengder data i databasen. Vi kunne ha latt være å forandre på dette, men da ville 

hele vårt system blitt mer uresponsivt. Vi fikk kuttet ned betraktelig på datamengden, og la til 

funksjonalitet for å tynne det ytterligere før det ble sendt til klientmaskinen. Hvis vi hadde hatt bedre 

tid, kunne vi prøvd å forbedre databasen, fått ryddet opp i den, men dette valgte vi å ikke gjøre. 

Fokuset vårt lå på å utvikle vårt produkt, og bare forholde oss til databasen og flydeteksjonssystemet 

slik dette var satt opp. Dette med unntak av uttynningen, som viste seg å være helt nødvendig. 

Vi har gjort det lettvint å hente ut data fra nøyaktige tidsintervaller. Systemet henter automatisk inn 

data fra de siste 30 minuttene når websiden blir lastet. Knapper for å hente ut data fra predefinerte 

intervaller er på plass: siste 30 minutter, siste time og siste 2 timer. Nøyaktige tidspunkt, ned til 

minuttet, kan kontrolleres ved help av en kalender og "slidere". 

Det var desverre tidspunkter der systemet hadde vært ute av drift, slik at det ikke fantes data. Slik 

nevnt over var det ikke noe å gjøre med dette. Derfor valgte vi å heller å informere brukeren om 

problemet. Hvis brukeren hentet ut data fra et tomt tidsrom på over 24 timer ble brukeren 

presentert en dialog med informasjon om datoer der flydeteksjonssystemet hadde vært ute av drift. 

Data for nøyaktige tidspunkter kan hentes ut ved hjelp av en "slider" nederst på websiden. Denne gir 

interpolerte dataverdier for tidspunkter utenfor de som databasen dekker. Vi var fornøyd med 

tidsutvelgeren vår, og selv om vi hadde hatt bedre tid, er det ikke noe vi hadde gjort annerledes i 

denne delen av oppgaven.  

 

Dataene presentert av vårt produkt er alle de aktuelle datafeltene fra databasen, men det var også 

data som var av liten interesse for arbeidsgiver. Vi lot være å hente ut og presentere disse dataene. 

De dataene vi valgte å hente ut blir vist på kartet. Noe blir representert ved plassering og orientering 

av flyikonene, andre data kan aksesseres ved å trykke på et flyikon, som åpner en tekstboks. Vi kunne 

ha valgt å legge til avanserte analysemuligheter, grafer og slikt, men bestemte oss for å ikke gjøre 

dette. Grunnen til dette var at nettsiden hadde blitt mer rotete og mindre brukervennlig. Det hadde 

også tatt lang tid å implementere. Dette, i forhold til hvor lite interessant dette var for oppdragsgiver, 

førte til at vi ikke implementerte slik funksjonalitet. Unntaket er en heatmap, som tilfører en slags 

oversikt over sannsynlighet for fly. 



89 
 

Vi er fornøyde med kartikonene. De ser bra ut med ulike mengder data. Det kan bli litt rotete hvis 

man velger et for stort tidsrom, men dette er uunngåelig da vi ønsker å gi brukeren så mye frihet som 

mulig. 

Ikonene på kartet inkluderer flyikoner, noder, stier og et ikon for Hessdalen AMS. Flyikonene er 

produsert ved hjelp av vektorgrafikk, og utarbeidet av oss. Dette representerer det øyeblikket valgt 

på tidslinjen, og har verdier interpolert ved hjelp av nærliggende noder. Hessdalen AMS 

representerer målestasjonen som befinner seg i Hessdalen. Den er formet som en svart sender på 

kartet. Nodene er små hvite sirkler med svart kantlinje. Dette er data om flyobservasjoner fra 

databasen. Brukeren kan trykke på alle disse ikonene og få opp en tekstboks med informasjon, som 

forklart i tidligere i dette kapitlet. Stiene tegnes mellom nodene, og viser banen flyet har tatt. Dette 

gjør det lettere å vite hvilke ikoner som hører sammen, dette forsterkes av at flyikonene og stiene 

har samme farge for ett fly.  

Brukeren kan også velge å feste informasjonsboksene på skjermen, slik at de ikke lukkes ved å trykke 

andre steder. Dette gjør det lettere å sammenlikne data mellom to ulike ikoner. Sticky-modus 

aktiveres ved å trykke på den korresponderende knappen på verktøylinjen. Vi har valgt å gjøre det på 

denne måten fordi det ser designmessig bra ut, og ga en ryddig måte å representere store mengder 

data. Hadde vi hatt bedre tid, kunne vi ha prøvd å forbedre ulike designaspekter, men vi er fornøyd 

med resultatet vi kom frem til. 

Slik nevnt over inkluderer også programmet muligheter for å gi en oversikt over intensiteten av 

flytrafikk i en periode. Dette gjøres ved at et farget "filter" legges over kartet, som viser intensiteten 

på en skala fra blått til rødt. Denne baseres på de diskrete datapunktene ("stikk-prøver") fra 

databasen, noe som fører til områder med grønne punkter uten tilknytting. Dette betyr at det er for 

lite data i området til å gi en god oversikt. Grunnen til at dette er at vi tok i bruk et eksternt bibliotek 

for vår heatmap, og denne aksepterte ikke linjer, bare enkeltpunkter. Problemet kunne vært løst ved 

å interpolert flere punkter før heatmap-en ble tegnet, men vi valgte å ikke gjøre dette. Det hadde 

ført til unødvendige mengder ekstraprosessering, og hadde ikke tilført mye. Heatmap-en ser 

akseptabel ut med større mengder data, det er bare ved minimale mengder at slike resultater 

oppstår, og disse kan bare bli sett bort fra. 

 

6.2 Levert produkt 
Hovedproduktet er en webside som presenterer dataene fra databasen, ved hjelp av et interaktivt 

kart. Man kan også velge ut data i et bestemt tidsrom, ved hjelp av et sett med tidsvelgere. Dataene 

vises ved hjelp av flyikoner, noder og tekstbokser. Man kan også "feste" 

tekstboksene/informasjonsvinduene ved help av en "sticky"-knapp, som gjør at de ikke forsvinner 

når andre informasjonsvinduer åpnes. Dette gjør det lettere å sammenlikne data. For å vise 

intensiteten av flytrafikk implementerte vi et heatmap. Jo mer flytrafikk det er i et område, jo rødere 

blir fargen (på en skala fra blått til rødt). Vi valgte å gjøre det på denne måten, både fordi det så 

designmessig bra ut, og ga brukeren en god oversikt over store mengder data. Både vi og 

oppdragsgiver var fornøyd med produktet. Hvis vi kunne forbedret noe på sluttproduktet, hadde det 

vært å legge til flere verktøy. Animasjon er et godt eksempel på dette, altså at tidslinjen kunne 

"spilles av" med Play/Pause-funksjonalitet. Vi skulle ønske gjerne ha fått forbedret heatmap-en, slik 



90 
 

at enkeltpunktene fra databasen ikke ga "rare", og potensielt uforståelige, heatmaps. Dette kunne vi 

for eksempel ha gjort ved å basere heatmap-en på linjer istedenfor punkter. 

Etter at prosjektet var ferdig, når vi skulle publisere det på nettsiden til Hessdalen-prosjektet 

(http://www.hessdalen.org/), støtte vi på et nytt problem. Oppdragsgiver ville ha produktet i både 

engelsk og norsk versjon. Resultatet var en rask “hack” der alle filene med norsk tekst i seg fikk 

tilsvarende oversatte versjone. Disse ligger parallelt med de originale filene. Dette er naturligvis langt 

fra optimalt, men det var det eneste vi kunne gjøre på så kort varsel. En idéell løsning på dette 

problemet ville vært dedikerte “språkfiler” som inneholdt alle tekststrenger som ble vist til brukeren, 

og der brukerens språkvalg ble brukt som oppslagsnøkkel.  På denne måten kunne disse forandres 

dynamisk uten massiv duplisering av kode.  

Vi er selv veldig fornøyd med rapporten, siden vi har diskuterte den grundig, og prøvde flere ulike 

angrepsvinkler. Hvis vi hadde satt den sammen som en liste over kronologiske hendelser, hadde 

dette vært meget enkelt å skrive. Dette hadde derimot fått rapporten til å høres for mye ut som en 

"fortelling", og hadde ikke hatt et like ryddig oppsett. Vi valgte å heller bruke en struktur som startet 

med en innledning, med oversikt over oppgaven, samt strukturen for resten av rapporten. Vi fulgte 

dette opp med et analysekapittel, hvor vi tok for oss en grundig analyse av oppdragsgivers ønsker, og 

så på de ulike teknologiene og mulighetene vi hadde til rådighet for å løse de relaterte 

problemstillingene. I neste kapittel tok vi for oss de løsningene vi valgte, og forklarte hvorfor og 

hvordan vi implementerte disse. Deretter hadde vi kapittelet som dekket implementasjonen av de 

ulike løsningene. Dette kapittelet inneholdt også en grundig oversikt over de ulike delene av 

systemet, og hvordan disse hang sammen. De tre siste kapittelene, testing og evaluering av systemet, 

diskusjon om hva vi syntes om prosjektet, og til sist en konklusjon av diskusjonen, reflekterte tilbake 

over de andre kapitlene. Her fikk vi rundet av rapporten på en god måte, der vi kunne uttrykke vår 

mening om oppgaven som helhet. Vi valgte å skrive hovedrapporten i Microsoft Word, da vi var mer 

kjent med dette enn OpenOffice og LaTeX. Word inneholdt også all funksjonalitet vi trengte. Dette 

var et godt valg, da det var lettere å gjøre raske forandringer frem-og-tilbake mellom ulike 

gruppemedlemmer. Word har imidlertid noen problemer og bugs, derfor kunne det i retrospekt ha 

vært greit å bruke LaTeX. Da hadde det vært lettere å garantere at rapporten hadde den ønskede 

strukturen, og en garantert homogen layout. Dette hadde imidlertid tatt lenger tid, da vi også måtte 

ha lært oss å bruke LaTeX mens vi utarbeidet rapporten, derfor var Word det beste valget for oss. 

 

6.3 Evaluering av arbeidsmetode 
Vi brukte mye tid på å diskutere ulike mulige løsninger, og deres styrker og svakheter. Dette tok 

relativt lang tid, men vi gjorde det slik for å oppnå beste mulige kvalitet på sluttproduktet. Ved å 

gjøre det slik, var det mindre sannsynlig at vi måtte gå tilbake ved et senere tidspunkt for å gjøre om 

på systemet hvis vi hadde tatt dårlige valg tidlig. 

Implementasjonen av systemet har vært relativt uproblematisk. Noen av løsningene har tatt lenger 

tid enn forventet, og vi hadde flere problemer grunnet i systemet utarbeidet av den tidligere 

prosjektgruppen, men utenom dette har arbeidet gått greit. Vi har møtt på noen problemer der vi 

brukte eksterne biblioteker, og implementering og tilpassning av disse har til tider vært problematisk. 

Vi valgte å fortsatt bruke disse bibliotekene, da løsningene de ga levde opp til våre og oppdragsgivers 

ønsker. Det sparte oss også for mye tid, i forhold til hvis vi hadde utarbeidet dem manuelt. 

http://www.hessdalen.org/


91 
 

Det skal også nevnes at en av de største komponentene av vårt sluttprodukt er et stort program 

bestående av mange komponenter som alle skal kommunisere med hverandre. Det er problematisk å 

delegere ut arbeidsoppgaver når man snakker om programmering av denne typen, derfor hadde vi 

hovedsakelig en utnevnt person som tok for seg den overordnede programmeringsjobben. 

Løsningene fremkom så i fellesskap, men det er hovedsakelig en person som tok seg av 

implementasjonen. Vi brukte lengre tid ved å gjøre det på denne måten, men vi fikk en bedre 

oversikt over programmet, og det ble ikke misforståelser som kunne skape større problemer. Vi 

kunne ha arbeidet på de samme filene samtidig, men dette ville ha krevet meget god kommunikasjon 

og planlegging, og potensielt mye tid på å rette opp eventuelle misforståelser. Vi foretrakk vår 

løsningen, fordi vi kunne splitte opp mindre arbeidsoppgaver som for eksempel utarbeiding av 

algoritmer for å løse spesifike problemer, som godt kan behandles som en separat arbeidsoppgave 

uten at dette hindrer fremgangen i prosjektet. Og da selve programmeringen i hovedsak ble håndtert 

av en person, kunne de andre jobbe videre på rapporten og andre arbeidsoppgaver parallelt med 

dette. Dette fungerte godt, og førte til et godt produkt med en helhetlig stil og kvalitet. 

 

 

  



92 
 

7. Konklusjon 
 

Målet med oppgaven var å utvikle et system som gjorde det enkelt å få oversikt over flytrafikken i 

Hessdalen i et gitt tidsintervall. Det ferdige systemet gjør dette raskt og enkelt for sluttbruker å få til. 

Tidspunktene som begrenser intervallet kan velges ned til minuttet, og dataene blir presentert på en 

oversiktlig og intuitiv måte. 

Det var også et godt valg å implementere en tidslinje for interpolasjon. Dataene i databasen var 

diskrete verdier som bare ga "punkt-prøver" av den fulle overflyvningen. Ved hjelp av 

interpolasjonen ble det mulig å også få en approksimasjon for flyets tilstand når det befant seg 

mellom slike punkter. 

Diverse verktøy som heatmap og begrensning av tidsrom rundt valgte overflyvninger, gjorde det også 

betraktelig enklere å behandle de store mengdene data, som var en av de største problemstillingene 

i oppgaven. 

Systemet ble levert til oppdragsgiver, som var fornøyd med resultatet. Rapporten ble også 

tilstrekkelig omfattende, og beskrev hele prosjektgangen grundig. 

Vår metode fokuserte på å presentere alle mulige løsninger på en gitt problemstilling. Dette 

resulterte i skillet mellom kapittel 2 og kapittel 3 i denne rapporten. Vi følte at dette fungerte godt, 

da vi både fikk mulighet til å presentere problemstillinger fra et overordnet perspektiv, samt 

mulighet til å grundig forklare valgene vi tok, og hvorfor. 

I tillegg gjorde vi et valg tidlig i prosjektet, om at vi hovedsakelig overlot implementasjonen av 

produktet til en designert person. Dette følte vi at fungerte godt, da dette ga et omfattende produkt, 

som fulgte en uniform stil. Da vi også jobbet i gruppe store deler av tiden, var det alltid mulig for alle 

gruppemedlemmer å bidra i problemløsningsprosessen. 

Vårt valg om å abstrahere oss fra systemet til den tidligere prosjektgruppen ga oss også nok tid til å 

utarbeide et solid prosjekt. Dette betydde også at vi hadde relativt liten forståelse for databasen og 

flydeteksjonssystemet tidlig i prosjektet, noe som gjorde at litt tid gikk tapt grunnet misforståelser. 

En av de viktigste problemstillingene var gruppering av fly ved hjelp av regtime-kolonnen, som vi 

anså som ubrukbar da prosjektet startet. Men vi følte likevel at dette var et godt valg, da vi fikk 

tilstrekkelig med tid til å utarbeide vårt produkt slik vi ønsket det. 

Hvis prosjektet skulle videreføres hadde implementasjon av mer spesifike typer datanalyse vært 

interessant. Vi valgte å ikke bruke tid på dette, da vi ikke hadde noen forutsetning for å utvikle gode 

algoritmer. Dataanalyse var heller ikke en del av vår oppgavebeskrivelse. Dette kunne ha vært en 

oppgave i seg selv, å utføre grundig analyse av flytrafikken for å finne en sammenheng med 

lysfenomenet. Slik det står må dette gjøres manuelt. Vi har bare lagt til rette for at dataene enkelt 

kan aksesseres og sammenliknes, og det blir opp til sluttbrukeren å tolke dataene i systemet.  



93 
 

8. Bibliography 
 

CoffeeScript. (2014). CoffeeScript. Retrieved april 26, 2014, from CoffeeScript: http://coffeescript.org 

Flightradar24 AB. (2014). Flightradar24. Hentet Mars 5, 2014 fra Flightradar24 Live Air Traffic: 

http://www.flightradar24.com 

GitHub. (2014). GitHub. Retrieved 03 12, 2014, from GitHub: https://github.com/ 

Movable Type Ltd. (2014). Movable Type Scripts. Retrieved april 29, 2014, from Calculate distance, 

bearing and more between Latitude/Longitude points: http://www.movable-

type.co.uk/scripts/latlong.html 

Oracle. (2014). Date and Time Functions, NOW(). Retrieved April 24, 2014, from MySQL :: 

Documentation: http://dev.mysql.com/doc/refman/5.5/en/date-and-time-

functions.html#function_now 

TortoiseHg. (2014). TortoiseHg. Retrieved 03 12, 2014, from Bitbucket: 

http://tortoisehg.bitbucket.org/about.html 

 

 

 


